Генная геномная хромосомная: 2. Генные, хромосомные и геномные мутации – Геномные, хромосомные и генные мутации.

Содержание

Классификация мутаций

  1. По характеру проявления в гетерозиготном состояниидоминантные (проявляются в гетерозиготном состоянии) и рецессивные (проявляются только в гомозиготном состоянии).

  2. В зависимости от причиныспонтанные (без видимых причин) и индуцированные (вызванные направленным действием какого-то фактора).

  3. В зависимости от локализации в клеткеядерные и цитоплазматические.

  4. По отношению к возможности наследованиягенеративные (в половой клетке) и соматические (возникшие в соматической телесной клетке). Соматические мутации у видов, размножающихся половым способом, по наследству не передаются. Но для данного индивида они не безразличны (например, родимые пятна, пятна на радужке, раковая опухоль).

  5. Функциональная (в зависимости от исхода)

    полезные, вредные (в том числе летальные) и нейтральные (безразличные).

  6. По характеру изменения геномагенные (изменение структуры гена), хромосомные (изменение строения хромосом) и геномные (изменение числа хромосом).

Генные мутации

В основе генных мутаций лежит изменение в строении молекулы ДНК. Все они могут быть объединены в три группы.

  1. Замена одних азотистых оснований на другие. Например, при дезаминировании (цитозин превращается в тимин) или при ошибочном включении нуклеотида в процессе репликации ДНК.

  2. Сдвиг рамки считывания – в результате выпадения или вставки какого-то нуклеотида в синтезируемую цепь.

ААА ЦГТ ААЦ фен – ала – лей

ААА АЦГ ТАА фен – цис – иле

кодогенная цепь ДНК полипептид

  1. Изменение порядка нуклеотидов в пределах гена (при повороте на 1800 участка цепи ДНК).

Хромосомные мутации

В основе хромосомных мутаций лежат изменения в строении хромосом. Они подразделяются на внутри- и межхромосомные.

а) дефишенси – отрыв концевого участка хромосомы;

б) делециявыпадение срединного участка хромосомы;

в) дупликация – удвоение участка хромосомы;

г) инверсия – поворот участка хромосомы на 180о. Инверсия может быть перицентрической (захватывает центромеру) и парацентрической (в пределах одного какого-то плеча).

а) транслокация – в основе лежит отрыв участка одной хромосомы и присоединение его к другой хромосоме. Разновидности транслокаций: реципрокная (взаимный обмен плечами) и робертсоновская – центрическое разделение или слияние отдельных хромосом.

Предполагают, что в процессе превращения обезьяны (шимпанзе) в человека имело место слияние двух акроцентрических хромосом в одну метацентрическую.

б) транспозиция – перемещение небольших участков генетического материала в пределах как одной хромосомы, так и всего кариотипа.

Геномные мутации

В основе лежит изменение числа хромосом. Различают два вида таких мутаций:

  • полиплоидия увеличение числа хромосом на величину, кратную гаплоидному набору;

  • анеуплоидия – увеличение числа хромосом на величину, не кратную гаплоидному набору. В случае трисомии имеется одна лишняя хромосома (набор 2n + 1), при моносомии одна хромосома отсутствует (набор 2n – 1), при нулисомии отсутствует целиком хромосомная пара (2n – 2).

Полиплоидия широко распространена в растительном мире. Так, существует три вида пшеницы (2n, 4n, 6n), где n = 7 . Хризантемы имеют наборы от 2n до 22n (n = 9). Аналогичные примеры можно найти у всех растений, как дикорастущих, так и культивируемых. Поэтому считается, что эволюция растений шла по пути полиплоидизации. Полиплоидия широко используется в селекционной работе (у полиплоидных растений крупнее плоды, больше семян).

В животном мире полиплоидия – явление редкое. Полиплоидные организмы обнаружены у инфузорий, рыб.

У человека установлено рождение триплоидов, однако они нежизнеспособны (существуют от нескольких минут до нескольких часов).

Геномные и хромосомные мутации у человека лежат в основе группы заболеваний, которые были названы хромосомными болезнями.

Хромосомные, генные и геномные мутации и их свойства

Мутация (от латинского слова «mutatio» — изменение) — это стойкое изменение генотипа, которое произошло под влиянием внутренних или внешних факторов. Различают хромосомные, генные и геномные мутации.

Каковы причины мутаций?

  • Неблагоприятные условия окружающей среды, условия, созданные экспериментально. Такие мутации называют индуцированными.
  • Некоторые процессы, происходящие в живой клетке организма. Например: нарушение репарации ДНК, репликация ДНК, генетическая рекомбинация.

Мутагены — факторы, вызывающие мутации. Делятся на:

  • Физические — распад радиоактивный, излучение ионизирующее и ультрафиолетовое, слишком высокая температура или слишком низкая.
  • Химические — восстановители и окислители, алкалоиды, агенты алкилирующие, нитропроизводные мочевины, пестициды, растворители органические, некоторые медикаменты.
  • Биологические — некоторые вирусы, продукты метаболизма (обмена веществ), антигены различных микроорганизмов.

Основные свойства мутаций

  • Передаются по наследству.
  • Вызываются разнообразными внутренними и внешними факторами.
  • Возникают скачкообразно и внезапно, иногда повторно.
  • Может мутировать любой ген.

Какие они бывают?

  • Геномные мутации — это изменения, которые характеризуются утратой или добавлением одной хромосомы (или нескольких) или же полного гаплоидного набора. Различают два вида таких мутаций — полиплоидию и гетероплоидию.

Полиплоидия — это изменение количества хромосом, которое кратно гаплоидному набору. Крайне редко встречается у животных. У человека возможны два вида полиплоидии: триплоидия и тетраплоидия. Дети, рождённые с такими мутациями, живут обычно не более месяца, а чаще погибают в стадии эмбрионального развития.

Гетероплоидия (или анеуплоидия) — это изменение количества хромосом, которое некратно галоидному набору. В результате этой мутации на свет появляются особи с аномальным количеством хромосом — полисомики и моносомики. Около 20-30 процентов моносомиков погибают в первые дни внутриутробного развития. Среди родившихся встречаются особи с синдромом Шерешевского-Тернера. Геномные мутации в растительном и животном мире также разнообразны. 

  • Хромосомные мутации — это такие изменения, которые возникают при перестройке структуры хромосом. При этом наблюдается перенос, потеря или удвоение части генетического материала нескольких хромосом или одной, а также изменение ориентации хромосомных сегментов в отдельно взятых хромосомах. В редких случаях возможна Робертсоновская транслокация, то есть объединение хромосом.
  • Генные мутации. В результате таких мутаций происходят вставки, делеции или замены нескольких или одного нуклеотидов, а также инверсия или дупликация разных частей гена. Эффекты мутаций генного типа разнообразны. Большая часть из них рецессивны, то есть никак не проявляются.

Также мутации делятся на соматические и генеративные

  • Соматические мутации — это изменения в любых клетках организма, кроме гамет. Например, при мутации клетки растения, из которой впоследствии должна развиться почка, а затем и побег, все его клетки будут мутантными. Так, на кусте красной смородины может возникнуть ветка с чёрными или белыми ягодами.
  • Генеративные мутации — это изменения в первичных половых клетках или в гаметах, которые из них образовались. Их свойства передаются следующему поколению.

По характеру воздействия на живой организм мутации бывают:

  • Летальные — обладатели таких изменений погибают либо в стадии эмбрионального развития, либо через достаточно короткое время после рождения. Это практически все геномные мутации.
  • Полулетальные (например, гемофилия) — характеризуются резким ухудшением работы каких-либо систем в организме. В большинстве случаев полулетальные мутации тоже вскоре приводят к смерти.
  • Полезные мутации — это основа эволюции, они приводят к появлению признаков, нужных организму. Закрепляясь, эти признаки могут стать причиной образования нового подвида или вида.

Классификация мутаций

  1. По характеру проявления в гетерозиготном состояниидоминантные (проявляются в гетерозиготном состоянии) и рецессивные (проявляются только в гомозиготном состоянии).

  2. В зависимости от причиныспонтанные (без видимых причин) и индуцированные (вызванные направленным действием какого-то фактора).

  3. В зависимости от локализации в клеткеядерные и цитоплазматические.

  4. По отношению к возможности наследованиягенеративные (в половой клетке) и соматические (возникшие в соматической телесной клетке). Соматические мутации у видов, размножающихся половым способом, по наследству не передаются. Но для данного индивида они не безразличны (например, родимые пятна, пятна на радужке, раковая опухоль).

  5. Функциональная (в зависимости от исхода)полезные, вредные (в том числе летальные) и нейтральные (безразличные).

  6. По характеру изменения геномагенные (изменение структуры гена), хромосомные (изменение строения хромосом) и геномные (изменение числа хромосом).

Генные мутации

В основе генных мутаций лежит изменение в строении молекулы ДНК. Все они могут быть объединены в три группы.

  1. Замена одних азотистых оснований на другие. Например, при дезаминировании (цитозин превращается в тимин) или при ошибочном включении нуклеотида в процессе репликации ДНК.

  2. Сдвиг рамки считывания – в результате выпадения или вставки какого-то нуклеотида в синтезируемую цепь.

ААА ЦГТ ААЦ фен – ала – лей

ААА АЦГ ТАА фен – цис – иле

кодогенная цепь ДНК полипептид

  1. Изменение порядка нуклеотидов в пределах гена (при повороте на 1800 участка цепи ДНК).

Хромосомные мутации

В основе хромосомных мутаций лежат изменения в строении хромосом. Они подразделяются на внутри- и межхромосомные.

а) дефишенси – отрыв концевого участка хромосомы;

б) делециявыпадение срединного участка хромосомы;

в) дупликация – удвоение участка хромосомы;

г) инверсия – поворот участка хромосомы на 180о. Инверсия может быть перицентрической (захватывает центромеру) и парацентрической (в пределах одного какого-то плеча).

а) транслокация – в основе лежит отрыв участка одной хромосомы и присоединение его к другой хромосоме. Разновидности транслокаций: реципрокная (взаимный обмен плечами) и робертсоновская – центрическое разделение или слияние отдельных хромосом.

Предполагают, что в процессе превращения обезьяны (шимпанзе) в человека имело место слияние двух акроцентрических хромосом в одну метацентрическую.

б) транспозиция – перемещение небольших участков генетического материала в пределах как одной хромосомы, так и всего кариотипа.

Геномные мутации

В основе лежит изменение числа хромосом. Различают два вида таких мутаций:

  • полиплоидия увеличение числа хромосом на величину, кратную гаплоидному набору;

  • анеуплоидия – увеличение числа хромосом на величину, не кратную гаплоидному набору. В случае трисомии имеется одна лишняя хромосома (набор 2n + 1), при моносомии одна хромосома отсутствует (набор 2n – 1), при нулисомии отсутствует целиком хромосомная пара (2n – 2).

Полиплоидия широко распространена в растительном мире. Так, существует три вида пшеницы (2n, 4n, 6n), где n = 7 . Хризантемы имеют наборы от 2n до 22n (n = 9). Аналогичные примеры можно найти у всех растений, как дикорастущих, так и культивируемых. Поэтому считается, что эволюция растений шла по пути полиплоидизации. Полиплоидия широко используется в селекционной работе (у полиплоидных растений крупнее плоды, больше семян).

В животном мире полиплоидия – явление редкое. Полиплоидные организмы обнаружены у инфузорий, рыб.

У человека установлено рождение триплоидов, однако они нежизнеспособны (существуют от нескольких минут до нескольких часов).

Геномные и хромосомные мутации у человека лежат в основе группы заболеваний, которые были названы хромосомными болезнями.

1 . Генный, хромосомный и геномный уровни организации наследственного аппарата.

Генный уровень организации наследственного аппарата.

Ген — это участок молекулы ДНК несущий информацию о структуре одного белка.

Каждый ген отвечает за развитие отдельного признака. Число генов, заключенных в наследственном материале, велико.

Закономерность передачи всего генетического материала из поколения в поколение достигается благодаря тому, что отдельные гены существуют не разрозненно, а собраны в хромосомы, с которыми происходят строго определенные превращения в процессе размножения клеток и организмов.

1)Один ген образует один признак

2)Один ген один фермент (белок)

3)В настоящее время: один ген один полипептид

Все гены делятся на структурные (несут информацию о белках) и регуляторные гены (контролируют и регулируют деятельность структурных генов).

Различают также гены аллельные и неаллельные гены. Аллельные гены могут быть доминантными, рецессивными и промежуточными, или комбинированными; неаллельные — эпистатичными, гипостатичными, комплементарными, или индифферентными.

Аллельные гены — это гены, расположенные в одинаковых локусах (участках) гомологичных хромосом и отвечающие за развитие альтернативных признаков.

По своей абсолютной локализации гены делятся на аутосомные и гены, сцепленные с полом. Изменения генов (мутации) являются источником изменчивости и приводят иногда к генным болезням.

Гены:

1)Работающие, во всех клетках (общие)

2)Работают в клетках одной ткани

3)Узко специальные для клеток одного типа

Хромосомный уровень организации наследственного аппарата.

В соответствии с хромосомной теорией наследственный материал, представленный в виде отдельных генов, организован в хромосомы. Благодаря наличию хромосом достигается объединение генов в комплексы — группы сцепления, количество которых во много раз меньше числа генов. Это позволяет точно распределять наследственный материал между клетками или передавать его от организма к организму, а также создает условия для появления новых комбинаций групп сцепления (анафаза I мейоза) или участков гомологичных хромосом (кроссинговер в профазе I мейоза) в гаметах. Таким образом, наличие хромосомной организации наследственного материала обеспечивает закономерности его распределения в потомстве и разнообразие организмов данного вида по их генетической структуре.

Геномный уровень организации наследственной информации.

Геном — это гаплоидный набор хромосом (одинарный).

Геномный уровень организации наследственного материала, объединяющий всю совокупность хромосомных генов, является эволюционно сложившейся структурой, характеризующейся относительно большей стабильностью, нежели генный и хромосомный уровни.

Результатом функционирования генома является формирование фенотипа целостного организма. В связи с этим фенотип организма нельзя представлять как простую совокупность признаков и свойств, это организм во всем многообразии его характеристик на всем протяжении индивидуального развития. Таким образом, поддержание постоянства организации наследственного материала на геномном уровне имеет первостепенное значение для обеспечения нормального развития, организма и воспроизведения у особи в первую очередь видовых характеристик.

Мутационные изменения, реализующиеся на геномном уровне организации наследственного материала,— мутации регуляторных генов, обладающих широким плейотропным действием, количественные изменения доз генов, транслокации и транспозиции генетических единиц, влияющие на характер экспрессии генов, наконец, возможность включения в геном чужеродной информации при горизонтальном переносе нуклеотидных последовательностей

Геномные мутации.

Геномные мутации — это изменение числа хромосом.Различают два вида геномных мутаций:

  1. полиплоидию,

  2. гетероплоидию (анеуплоидию).

Полиплоидия – увеличение числа хромосом на величину кратную гаплоидному набору (3n, 4n…). У человека описана триплоидия (3n=69 хромосом) и тетраплоидия (4n= 92 хромосомы).

Гетероплоидия (или анеуплоидия) — увеличение или уменьшение числа хромосом на 1,2 или большее число. Виды гетероплоидии: моносомия, нулисомия, полисомии (три-, тетра-, пентасомии).

Норма (2n) ХХ ХХ ХХ

1 2 3

Мы видим по две хромосомы каждой пары в гипотетической клетке с 6 хромосомами или 3 парами.

а) Моносомия — отсутствие одной хромосомы (2n-1)

ХХ ХХ Х-

1 2 3

б) Нулисомия — отсутствие одной пары хромосом (2n-2)

ХХ ХХ —

1 2 3

в)Трисомия — одна лишняя хромосома (2n+1)

ХХХ ХХ ХХ

1 2 3

г)Тетрасомия — две лишнее хромосомы (2n+2)

ХХХХ ХХ ХХ

1 2 3

д) Пентасомия — (2n+3)

ХХХХХ ХХ ХХ

1 2 3

Причины формирования геномных мутаций.

1) Наиболее важным механизмом является нерасхождение хромосом при митозе или мейозе. Хромосо­мы, которые в норме должны разделиться во время клеточного деле­ния, остаются соединенными вместе и в анафазе отходят к одному полюсу. Это может произойти в ходе митотического деления, но ча­ще наблюдается во время мейоза. У человека акроцентрические хромосомы имеют тенденцию чаще вовле­каться в нерасхождение. Мейотическое нерасхождение было открыто впервые Бриджесом (1916)у дрозофилы. На каждую гамету с одной добавоч­ной хромосомой приходится другая, без одной хромосомы. После оп­лодотворения гаметой с нормальным набором хромосом зигота оказы­вается либо трисомной (с лишней хромосомой), либо моносомной (не хватает одной хромосомы). Ниже приведены некоторые примеры нерасхождения.

Схема нормального мейоза

у мужчин у женщин

46,ХУ 46,ХХ

23,Х 23,У 23,Х 23,Х

Мейоз с нерасхождением половых хромосом у мужчины

46,ХУ

24,ХУ 22,-

После слияния с яйцеклеткой (23,Х) образуются зиготы 47,ХХУ (синдром Клайнфельтера) или 45,ХО ( синдром Шерешевского- Тернера).

Мейоз с нерасхождением половых хромосом у женщин

46,ХХ

24,ХХ 22,-

После оплодотворения нормальными сперматозоидами (23,Х) образуются зиготы 47,ХХХ (трисомия Х) или 45,ХО (синдром Шерешевского-Тернера). После оплодотворения сперматозоидами (23,У) образуются зиготы 47,ХХУ (синдром Клайнфельтера) или 45,УО (летальная мутация).

Нерасхождение 21 хромосомы при мейозе у женщины.

Р21,21 х 21,21

гаметы 21,21 0 21

F1 21,21,21 21,0

синдром Дауна летальная мутация

Если хромосомы не расходятся при митозе в процессе дробления или других стадий эмбрионального развития, то образуются мозаики. Схема образования мозаичной формы синдрома Дауна.

21,21

21,21 21,21

21,21 21,21 21.0 21,21,21

нормальный клон клетокмоносомия по клетки с

21 хромосоме, трисомией по

летальная му- 21 хромосоме

тация, клетки

погибают.

В результате такой мутации образуется мозаик типа 46,ХХ/ 47,ХХ,+21 или

46,ХХ/ 47,ХХ,+21. Чем позже в эмбриональном развитии нарушится митоз, тем меньше образуется аномальных клеток.

2.Вторым механизмом, обусловливающим геномные мутации, яв­ляется утрата отдельной хромосомы вследствие «анафазного отстава­ния»: во время движения в анафазе одна хромосома может отстать от всех других. Она не включается в ядро и разрушается ферментами цитоплазмы. Утрата хромосомы ведет к мозаицизму, при котором имеется одна трисомная и одна нормальная клеточная популяция.

Аномальное число хромосом в клетке (анеуплоидия) увеличи­вает риск последующих нарушений, таких как потеря хромосом вслед­ствие анафазного отставания в последующих клеточных делениях.

3. Рождение больных детей у родителей с хромосомными болезнями (синдромы Клайнфельтера, полисомии Х и др.). У родителей с трисомией образуется равное число нормальных или аномальных гамет. Теоретически вероятность рождения ребенка с геномной мутацией составляет 50%. Однако, это фактически встречается реже (приблизительно в 10%), т.к. анеуплоиды характеризуются сниженной жизнеспособностью и фертильностью.

Причины формирования полиплоидии.

1. Полиплоидия может быть следствием нерасхождения всех хромосом при мейозе у одного из родителей. В результате образуется диплоидная половая клетка (2n). После оплодотворения нормальной гаметой сформируется триплоид (3n).

2. Может наблюдаться соматическая мутация — нерасхождение всех хромосом при делении клеток эмбриона (нарушение митоза). Это приводит к появлению тетраплоида (4 n) полного или мозаичной формы.

3. Возможно также слияние диплоидной зиготы с направительным тельцем или оплодотворение яйцеклетки двумя сперматозоидами.

это изменение генома. Основные виды и примеры :: SYL.ru

Что такое мутация? Это, вопреки ошибочным представлениям, не всегда нечто страшное или опасное для жизни. Под термином подразумевают изменение генетического материала, происходящее под влиянием внешних мутагенов или собственно среды организма. Такие изменения могут быть полезными, не влиять на функции внутренних систем или же, наоборот, приводить к серьезным патологиям.

мутация - это

Разновидности мутаций

Принято подразделять мутации на геномные, хромосомные и генные. О них и поговорим более детально. Геномные мутации — это изменения в структуре наследственного материала, кардинальным образом влияющие на геном. К ним относятся, прежде всего, увеличение или уменьшение числа хромосом. Геномные мутации — это патологии, часто встречающиеся в растительном и животном мире. У человека обнаружено только три их разновидности.

Хромосомные мутации — это стойкие скачкообразные изменения. Они связаны со структурой нуклеопротеидной единицы. К ним относится: делеция — выпадение участка хромосомы, транслокация — перемещение группы генов с одной хромосомы на другую, инверсия — полный поворот небольшого фрагмента. Генные мутации — это наиболее частая разновидность изменения генетического материала. Встречается гораздо чаще, чем хромосомная.

геномные мутации это

Полезные и нейтральные мутации

К безвредным мутациям, которые встречаются у людей, относятся гетерохромия (радужки глаз разного цвета), транспозиция внутренних органов, аномально высокая плотность костей. Существуют также полезные видоизменения. Например, иммунитет к СПИДу, малярии, тетрохроматическое зрение, гипосомния (снижение потребности во сне).

генные мутации это

Последствия геномных мутаций

Геномные мутации — это причины самых серьезных генетических патологий. Из-за изменения числа хромосом организм не может нормально развиваться. Геномные мутации почти всегда приводят к умственной отсталости. К ним относится трисомия 21-ой хромосомы — наличие трех копий вместо нормальных двух. Она является причиной синдрома Дауна. Дети с этим заболеванием испытывают трудности в учебе, отстают в психическом и эмоциональном развитии. Перспективы их полноценной жизни зависят, прежде всего, от степени умственной отсталости и эффективности занятий с больным.

Еще одно страшное отклонение — моносомия Х-хромосомы (наличие одной копии вместо двух). Приводит к другой тяжелой патологии — синдрому Шерешевского-Тернера. Страдают этим заболеванием только девочки. К основным симптомам относят низкий рост, половое недоразвитие. Часто имеет место легкая форма олигофрении. Для лечения применяются стероиды и половые гормоны. Как видно, геномная мутация — это причина тяжелейших патологий развития.

хромосомные мутации это

Некоторые хромосомные патологии

Наследственные болезни, вызванные мутацией сразу нескольких генов или любым нарушением структуры хромосомы, называют хромосомными заболеваниями. Самая распространенная из них — синдром Ангельмана. Это наследственное заболевание вызвано отсутствием нескольких генов 15-ой материнской хромосомы. Болезнь проявляется в раннем возрасте. Первые признаки — снижение аппетита, отсутствие или бедность речи, постоянная беспричинная улыбка. Дети с этой патологией испытывают трудности с обучением и общением. Тип наследования недуга до сих пор изучается.

Сходное с синдромом Ангельмана заболевание — синдром Прадера-Вилли. Здесь также имеет место отсутствие генов 15-ой хромосомы, только не материнской, а отцовской. Основные симптомы: ожирение, гиперсомния, косоглазие, низкий рост, задержка психического развития. Это заболевание сложно диагностировать без генетического анализа. Как и для многих наследственных заболеваний, полноценная терапия не разработана.

хромосомные мутации это

Некоторые генные заболевания

К генным заболеваниям относятся нарушения обмена веществ, которые вызывает моногенная мутация. Это нарушения метаболизма углеводов, белков, липидов, синтеза аминокислот. Знакомое многим заболевание, фенилкетонурия, вызвано мутацией единственного из многих генов 12-ой хромосомы. В результате изменения одна из незаменимых аминокислот фенилаланин не превращается в тирозин. Больным этим генетическим заболеванием приходится избегать любых пищевых продуктов, содержащих даже незначительное количество фенилаланина.

Одно из самых серьезных заболеваний соединительной ткани, фибродисплазия, также вызвано моногенной мутацией на 2-ой хромосоме. У больных мышцы и связки со временем закостеневают. Течение заболевания очень тяжелое. Полноценное лечение не разработано. Тип передачи по наследству — аутосомно-доминантный. Еще одним опасным недугом является болезнь Вильсона — редкая патология, которая проявляется нарушением метаболизма меди. Болезнь вызывает мутация гена на 13-ой хромосоме. Заболевание проявляется накоплением меди в нервной ткани, почках, печени, роговице глаз. На краях радужной оболочки можно заметить так называемые кольца Кайзера-Флейшнера — важный симптом при диагностике. Обычно первый признак наличия синдрома Вильсона — нарушения в работе печени, ее патологическое увеличение (гепатомегалия), цирроз.

Как видно из этих примеров, генная мутация — это часто причина серьезных и на данный момент неизлечимых заболеваний.

Мутация — Википедия

Мута́ция (лат. mutatio — изменение) — стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) изменение генома. Термин предложен Гуго де Фризом в 1901 году. Процесс возникновения мутаций получил название мутагенеза.

Мутации делятся на спонтанные и индуцированные.

Спонтанные мутации возникают самопроизвольно на протяжении всей жизни организма в нормальных для него условиях окружающей среды с частотой около 10−9{\displaystyle 10^{-9}} — 10−12{\displaystyle 10^{-12}} на нуклеотид за клеточную генерацию организма.

Индуцированными мутациями называют наследуемые изменения генома, возникающие в результате тех или иных мутагенных воздействий в искусственных (экспериментальных) условиях или при неблагоприятных воздействиях окружающей среды.

Мутации появляются постоянно в ходе процессов, происходящих в живой клетке. Основные процессы, приводящие к возникновению мутаций — репликация ДНК, нарушения репарации ДНК, транскрипции[1][2] и генетическая рекомбинация.

Связь мутаций с репликацией ДНК[править | править код]

Многие спонтанные химические изменения нуклеотидов приводят к мутациям, которые возникают при репликации. Например, из-за дезаминирования цитозина напротив гуанина в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК, напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Связь мутаций с рекомбинацией ДНК[править | править код]

Из процессов, связанных с рекомбинацией, наиболее часто приводит к мутациям неравный кроссинговер. Он происходит обычно в тех случаях, когда в хромосоме имеется несколько дуплицированных копий исходного гена, сохранивших похожую последовательность нуклеотидов. В результате неравного кроссинговера в одной из рекомбинантных хромосом происходит дупликация, а в другой — делеция.

Связь мутаций с репарацией ДНК[править | править код]

Спонтанные повреждения ДНК встречаются довольно часто, такие события имеют место в каждой клетке. Для устранения последствий подобных повреждений имеется специальные репарационные механизмы (например, ошибочный участок ДНК вырезается и на этом месте восстанавливается исходный). Мутации возникают лишь тогда, когда репарационный механизм по каким-то причинам не работает или не справляется с устранением повреждений. Мутации, возникающие в генах, кодирующих белки, ответственные за репарацию, могут приводить к многократному повышению (мутаторный эффект) или понижению (антимутаторный эффект) частоты мутирования других генов. Так, мутации генов многих ферментов системы эксцизионной репарации приводят к резкому повышению частоты соматических мутаций у человека, а это, в свою очередь, приводит к развитию пигментной ксеродермы и злокачественных опухолей покровов. Мутации могут появляться не только при репликации, но и при репарации — эксцизионной репарации или при пострепликативной.

В настоящее время существует несколько подходов для объяснения природы и механизмов образования мутаций. Общепринятой, в настоящее время, является полимеразная модель мутагенеза. Она основана на идее о том, что единственной причиной образования мутаций являются случайные ошибки ДНК-полимера. В предложенной Уотсоном и Криком таутомерной модели мутагенеза впервые была высказана идея о том, что в основе мутагенеза лежит способность оснований ДНК находиться в различных таутомерных формах. Процесс образования мутаций рассматривается как чисто физико-химическое явление. Полимеразно-таутомерная модель ультрафиолетового мутагенеза опирается на идею о том, что при образовании цис-син циклобутановых пиримидиновых димеров может изменяться таутомерное состояние входящих в них оснований. Изучается склонный к ошибкам и SOS-синтез ДНК, содержащей цис-син циклобутановые пиримидиновые димеры[3]. Существуют и другие модели.

Полимеразная модель мутагенеза[править | править код]

В полимеразной модели мутагенеза считается, что единственной причиной образования мутаций являются спорадические ошибки ДНК-полимераз. Впервые полимеразная модель ультрафиолетового мутагенеза была предложена Бреслером[4]. Он предположил, что мутации появляются в результате того, что ДНК-полимеразы напротив фотодимеров иногда встраивают некомплементарные нуклеотиды. В настоящее время такая точка зрения является общепринятой[5]. Известно А-правило (A-rule), согласно которому напротив поврежденных участков ДНК-полимераза чаще всего встраивает аденины. Полимеразная модель мутагенеза объясняет природу мишенных мутаций замены оснований[6].

Таутомерная модель мутагенеза[править | править код]

Уотсон и Крик предположили, что в основе спонтанного мутагенеза лежит способность оснований ДНК переходить при некоторых условиях в неканонические таутомерные формы, влияющие на характер спаривания оснований. Эта гипотеза привлекала к себе внимание и активно развивалась. Обнаружены редкие таутомерные формы цитозина в кристаллах оснований нуклеиновых кислот, облученных ультрафиолетовым светом. Результаты многочисленных экспериментальных и теоретических исследований однозначно говорят о том, что основания ДНК могут переходить из канонических таутомерных форм в редкие таутомерные состояния. Было выполнено много работ посвященных исследованиям редких таутомерных форм оснований ДНК. С помощью квантовомеханических расчетов и метода Монте-Карло было показано, что таутомерное равновесие в цитозин — содержащих димерах и в гидрате цитозина сдвинуто по направлению к их имино формам как в газовой фазе, так и в водном растворе. На этой основе объясняется ультрафиолетовый мутагенез.[7] В паре гуанин — цитозин устойчивым будет только одно редкое таутомерное состояние, в котором атомы водородов первых двух водородных связей, отвечающих за спаривание оснований, одновременно изменяют свои положения.[8] А поскольку при этом изменяются положения атомов водорода, участвующих в Уотсон-Криковском спаривании оснований, то следствием может быть образование мутаций замены оснований, транзиций от цитозина к тимину или образование гомологичных трансверсий от цитозина к гуанину. Участие редких таутомерных форм в мутагенезе обсуждалось неоднократно.

Другие модели мутагенеза[править | править код]

В работах Полтева с соавторами предложен и обоснован молекулярный механизм узнавания полимеразами комплементарных пар оснований нуклеиновых кислот. На основании этой модели были изучены некоторые закономерности спонтанного и индуцированного аналогами оснований мутагенеза. Объяснено образование мутаций замены оснований в предположении, что главной причиной мутагенеза является образование неканонических пар оснований, типа Хугстиновских пар.[9].

Предполагается, что одной из причин образования мутаций замены основания является дезаминирование 5-метилцитозина[10], что может вызывать транзиции от цитозина к тимину. Из-за дезаминирования цитозина напротив него в цепь ДНК может включаться урацил (образуется пара У-Г вместо канонической пары Ц-Г). При репликации ДНК напротив урацила в новую цепь включается аденин, образуется пара У-А, а при следующей репликации она заменяется на пару Т-А, то есть происходит транзиция (точечная замена пиримидина на другой пиримидин или пурина на другой пурин).

Существует несколько классификаций мутаций по различным критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila), антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные.

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

  • геномные;
  • хромосомные;
  • генные.

Геномные: — полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосом) и анеуплоидия (гетероплоидия) — изменение числа хромосом, не кратное гаплоидному набору (см. Инге-Вечтомов, 1989). В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.

При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом, т. н. Робертсоновская транслокация, которая является переходным вариантом от хромосомной мутации к геномной).

На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точечных мутациях.

Точечная мутация, или единственная замена оснований, — тип мутации в ДНК или РНК, для которой характерна замена одного азотистого основания другим. Термин также применяется и в отношении парных замен нуклеотидов. Термин точечная мутация включает так же инсерции и делеции одного или нескольких нуклеотидов. Выделяют несколько типов точечных мутаций.

  • Точечные мутации замены оснований. Поскольку в состав ДНК входят азотистые основания только двух типов — пурины и пиримидины, все точечные мутации с заменой оснований разделяют на два класса: транзиции и трансверсии[11][12]. Транзиция — это мутация замены оснований, когда одно пуриновое основание замещается на другое пуриновое основание (аденин на гуанин или наоборот), либо пиримидиновое основание на другое пиримидиновое основание (тимин на цитозин или наоборот. Трансверсия — это мутация замены оснований, когда одно пуриновое основание замещается на пиримидиновое основание или наоборот). Транзиции происходят чаще, чем трансверсии.
  • Точечные мутации сдвига рамки чтения. Они делятся на делеции и инсерции[13][14]. Делеции — это мутация сдвига рамки чтения, когда в молекуле ДНК выпадает один или несколько нуклеотидов. Инсерция — это мутация сдвига рамки чтения, когда в молекулу ДНК встраивается один или несколько нуклеотидов.

Встречаются также сложные мутации. Это такие изменения ДНК, когда один её участок заменяется участком другой длины и другого нуклеотидного состава[15].

Точечные мутации могут появляться напротив таких повреждений молекулы ДНК, которые способны останавливать синтез ДНК. Например, напротив циклобутановых пиримидиновых димеров. Такие мутации называются мишенными мутациями (от слова «мишень»)[5]. Циклобутановые пиримидиновые димеры вызывают как мишенные мутации замены оснований [6 9], так и мишенные мутации сдвига рамки[16].

Иногда точечные мутации образуются на, так называемых, неповрежденных участках ДНК, часто в небольшой окрестности от фотодимеров. Такие мутации называются немишенными мутациями замены оснований или немишенными мутациями сдвига рамки[17].

Точечные мутации образуются не всегда сразу же после воздействия мутагена. Иногда они появляются после десятков циклов репликаций. Это явление носит название задерживающихся мутаций[18]. При нестабильности генома, главной причине образования злокачественных опухолей, резко возрастает количество немишенных и задерживающихся мутаций[19].

Возможны четыре генетических последствия точковых мутаций: 1) сохранение смысла кодона из-за вырожденности генетического кода (синонимическая замена нуклеотида), 2) изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация), 3) образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер — UAG, охр — UAA и опал — UGA (в соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов — например амбер-мутация), 4) обратная замена (стоп-кодона на смысловой кодон).

По влиянию на экспрессию генов мутации разделяют на две категории: мутации типа замен пар оснований и типа сдвига рамки считывания (frameshift). Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трём, что связано с триплетностью генетического кода.

Первичную мутацию иногда называют прямой мутацией, а мутацию, восстанавливающую исходную структуру гена, — обратной мутацией, или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны.

Почковые мутации (спорты) — стойкие соматические мутации, происходящие в клетках точек роста растений. Приводят к клоновой изменчивости[20]. При вегетативном размножении сохраняются. Многие сорта культурных растений являются почковыми мутантами[21].

Последствия мутаций для клетки и организма[править | править код]

Мутации, которые ухудшают деятельность клетки в многоклеточном организме, часто приводят к уничтожению клетки (в частности, к программируемой смерти клетки, — апоптозу). Если внутри- и внеклеточные защитные механизмы не распознали мутацию, и клетка прошла деление, то мутантный ген передастся всем потомкам клетки и, чаще всего, приводит к тому, что все эти клетки начинают функционировать иначе.

Мутация в соматической клетке сложного многоклеточного организма может привести к злокачественным или доброкачественным новообразованиям, мутация в половой клетке — к изменению свойств всего организма-потомка.

В стабильных (неизменных или слабо изменяющихся) условиях существования большинство особей имеют близкий к оптимальному генотип, а мутации вызывают нарушение функций организма, снижают его приспособленность и могут привести к смерти особи. Однако в очень редких случаях мутация может привести к появлению у организма новых полезных признаков, и тогда последствия мутации оказываются положительными; в этом случае они являются средством адаптации организма к окружающей среде и, соответственно, называются адаптационными.

При существенном изменении условий существования те мутации, которые раньше были вредными, могут оказаться полезными. Таким образом, мутации являются материалом для естественного отбора. Так, мутанты-меланисты (темноокрашенные особи) в популяциях березовой пяденицы в Англии впервые были обнаружены учеными среди типичных светлых особей в середине XIX века. Темная окраска возникает в результате мутации одного гена. Бабочки проводят день на стволах и ветвях деревьев, обычно покрытых лишайниками, на фоне которых светлая окраска является маскирующей. В результате промышленной революции, сопровождающейся загрязнением атмосферы, лишайники погибли, а светлые стволы берез покрылись копотью. В результате к середине XX века (за 50-100 поколений) в промышленных районах темная морфа почти полностью вытеснила светлую. Было показано, что главная причина преимущественного выживания чёрной формы — хищничество птиц, которые избирательно выедали светлых бабочек в загрязненных районах.

Если мутация затрагивает «молчащие» участки ДНК либо приводит к замене одного элемента генетического кода на синонимичный, то она обычно никак не проявляется в фенотипе (проявление такой синонимичной замены может быть связано с разной частотой употребления кодонов). Однако, методами генного анализа такие мутации можно обнаружить. Поскольку чаще всего мутации происходят в результате естественных причин, то в предположении, что основные свойства внешней среды не менялись, получается, что частота мутаций должна быть примерно постоянной. Этот факт можно использовать для исследования филогении — изучения происхождения и родственных связей различных таксонов, в том числе и человека. Таким образом, мутации в молчащих генах служат для исследователей «молекулярными часами». Теория «молекулярных часов» исходит также из того, что большинство мутаций нейтрально, и скорость их накопления в данном гене не зависит или слабо зависит от действия естественного отбора и потому остается постоянной в течение длительного времени. Для разных генов эта скорость, тем не менее, будет различаться.

Исследование мутаций в митохондриальной ДНК (наследуется по материнской линии) и в Y-хромосомах (наследуется по отцовской линии) широко используется в эволюционной биологии для изучения происхождения рас и народностей, реконструкции биологического развития человечества.

В 1940-е годы среди микробиологов была популярна точка зрения, согласно которой мутации вызываются воздействием фактора среды (например, антибиотика), к которому они позволяют адаптироваться. Для проверки этой гипотезы был разработан флуктуационный тест и метод реплик.

Флуктуационный тест Лурии-Дельбрюка заключается в том, что небольшие порции исходной культуры бактерий рассеивают в пробирки с жидкой средой, а после нескольких циклов делений добавляют в пробирки антибиотик. Затем (без последующих делений) на чашке Петри с твердой средой высевают выживших устойчивых к антибиотику бактерий. Тест показал, что число устойчивых колоний из разных пробирок очень изменчиво — в большинстве случаев оно небольшое (или нулевое), а в некоторых случаях очень высокое. Это означает, что мутации, вызвавшие устойчивость к антибиотику, возникали в случайные моменты времени как до, так и после его воздействия.

Метод реплик заключается в том, что с исходной чашки Петри, где на твердой среде растут колонии бактерий, делается отпечаток на ворсистую ткань, а затем с ткани бактерии переносятся на несколько других чашек, где рисунок их расположения оказывается тем же, что на исходной чашке. После воздействия антибиотиком на всех чашках выживают колонии, расположенные в одних и тех же точках. Высевая такие колонии на новые чашки, можно показать, что все бактерии внутри колонии обладают устойчивостью.

Таким образом, обоими методами было доказано, что «адаптивные» мутации возникают независимо от воздействия того фактора, к которому они позволяют приспособиться, и в этом смысле мутации случайны. Однако несомненно, что возможность тех или иных мутаций зависит от генотипа и канализована предшествующим ходом эволюции (см. Закон гомологических рядов в наследственной изменчивости).

Кроме того, закономерно различается частота мутирования разных генов и разных участков внутри одного гена. Также известно, что высшие организмы используют «целенаправленные» (то есть происходящие в определённых участках ДНК) мутации в механизмах иммунитета[источник не указан 2010 дней]. С их помощью создаётся разнообразие клонов лимфоцитов, среди которых в результате всегда находятся клетки, способные дать иммунный ответ на новую, неизвестную для организма болезнь. Подходящие лимфоциты подвергаются положительной селекции, в результате возникает иммунологическая память. (В работах Юрия Чайковского говорится и о других видах направленных мутаций.)

  1. ↑ Banerjee S. K., Borden A., Christensen R. B., LeClerc J. E., Lawrence C. W. SOS-dependent replication past a single trans-syn T-T cyclobutane dimer gives a different mutation spectrum and increased error rate compared with replication past this lesion in uniduced cell // J. Bacteriol. — 1990. — 172. — P. 2105—2112.
  2. ↑ Jonczyk P., Fijalkowska I., Ciesla Z. Overproduction of the subunit of DNA polymerase III counteracts the SOS-mutagenic response of Esthetician coli // Proc. Nat. Acad. Sci. USA. — 1988. — 85. — Р. 2124—2127.
  3. ↑ Grebneva H. A. One of mechanisms of targeted substitution mutations formation at SOS-replication of double-stranded DNA containing cis-syn cyclobutane thymine dimers // Environ. Mol. Mutagen. — 2006. −47. — P. 733—745.
  4. ↑ Bresler S. E. Theory of misrepair mutagenesis // Mutat. Res. — 1975. — 29. — P. 467—472.
  5. 1 2 Pham P., Bertram J. G, O’Donnell M., Woodgate R., Goodman M. F. A model for SOS-lesion-targeted mutations in Escherichia coli // Nature. — 2001. — 408. — P. 366—370.
  6. ↑ Taylor J.-S. New structural and mechanistic insight into the A-rule and the instructional and non-instructional behavior of DNA photoproducts and other lesions // Mutation. Res. — 2002. −510. — P. 55-70.
  7. ↑ Danilov V. I., Les A., Alderfer J. L. A theoretical study of the cis-syn pyrimidine dimers in the gas phase and water cluster and a tautomer — bypass mechanism for the origin of UV-induced mutations // J. Biomol. Struct. Dyn. — 2001. — 19. — P. 179—191.
  8. ↑ Gorb L., Podolyan Y., Dziekonski P., Sokalski W. A., Leszczynski J. Double-proton transfer in adenine-thymine and guanine-cytosine base pairs. A post-Hartree-Fock ab initio study // J. Am. Chem. Soc. — 2004. — 126. — P. 10119-10129.
  9. ↑ Полтев В. И., Шулюпина Н. В., Брусков В. И. Молекулярные механизмы правильности биосинтеза нуклеиновых кислот. Компьютерное изучение роли полимераз в образовании неправильных пар модифицированными основаниями // Молек. биол. — 1996. — 30. — С. 1284—1298.
  10. ↑ Cannistraro V. J., Taylor J. S. Acceleration of 5-methylcytosine deamination in cyclobutane dimers by G and its implications for UV-induced C-to-T mutation hotspots // J. Mol. Biol. — 2009. — 392. — P. 1145—1157.
  11. ↑ Тарасов В. А. Молекулярные механизмы репарации и мутагенеза. — М.: Наука, 1982. — 226 с.
  12. ↑ Friedberg E. C., Walker G. C., Siede W. DNA repair and mutagenesis. — Washington: ASM Press, DC, 1995.
  13. ↑ Ауэрбах Ш. Проблемы мутагенеза. — М.: Мир, 1978. — 463 с.
  14. ↑ Friedberg E. C., Walker G. C., Siede W., Wood R. D., Schultz R. A., Ellenberger T. DNA repair and mutagenesis. — part 3. Washington: ASM Press. — 2006. 2nd ed.
  15. ↑ Levine J. G., Schaaper R. M., De Marini D. M. Complex frameshift mutations mediated by plasmid pkm 101: Mutational mechanisms deduced mutation spectra in Salmonella // Genetics. — 1994. — 136. — P. 731—746.
  16. ↑ Wang C.-I., Taylor J.-S. In vitro evidence that UV-induced frameshift and substitution mutations at T tracts are the result of misalignment-mediated replication past a specific thymine dimer // Biochemistry — 1992. — 31. — P. 3671-3681.
  17. ↑ Maor-Shoshani A., Reuven N. B., Tomer G., Livneh Z. Highly mutagenic replication by DNA polymerase V (UmuC) provides a mechanistic basis for SOS untargeted mutagenesis // Proc. Natl. Acad. Sci. USA — 2000. — 97. — P. 565—570.
  18. ↑ Little J. B., Gorgojo L., Vetrovs H. Delayed appearance of lethal and specific gene mutations in irradiated mammalian cells // Int. J. Radiat. Oncol. Biol. Phys. — 1990. — 19. — P. 1425—1429.
  19. ↑ Niwa O. Radiation induced dynamic mutations and transgenerational effects // J. Radiation Research. — 2006. — 47. — P. B25-B30.
  20. Самигуллина Н. С. Практикум по селекции и сортоведению плодовых и ягодных культур: Учебное издание. — Мичуринск: Мичуринский государственный аграрный университет, 2006. — 197 с.
  21. Трошин Л. П., Фролова Л. И. Методическое пособие по ампелографии. Словарные дефиниции. — Краснодар, 1996.
  • Инге-Вечтомов С. В. Генетика с основами селекции. М., Высшая школа, 1989.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *