Какие лучи: Какими бывают ЛУЧИ — Карта слов и выражений русского языка – Синонимы и антонимы «луч» — анализ и ассоциации к слову луч. Морфологический разбор и склонение слов

Содержание

Какие бывают УФ-лучи и как от них правильно защищаться?


Предупрежден – значит вооружен. Эта фраза как нельзя лучше характеризует разумное отношение к ультрафиолету. Чтобы подобрать правильную защиту, нужно досконально разобраться в типах излучения. В этом нам помогла тренинг-менеджер Eisenberg Paris Наталья Троньон.



 Наталья Троньон, тренинг-менеджер

UVA- и UVB-

Ультрафиолет — электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями. Длины волн УФ-излучения лежат в интервале от 10 до 400 нм. Термин происходит от лат. ultra — сверх, за пределами, и violet – фиолетовый.
В УФ излучении выделяют три участка спектра:
UVA лучи, 315—400 нм.
UVB лучи, 280—315 нм.
UVC лучи, 100—280 нм.
По мере увеличения длины волны, энергия УФ-излучения снижается. Фактически весь UVC и около 90% UVB лучей поглощаются земной атмосферой (озоновым слоем). Поверхности земли достигают около 30% UVA-лучей.
UVB лучи на 70% отражаются роговым слоем кожи. UVA лучи способны проникать сквозь стекло и проходить роговой слой кожи, но теряют свою «активность» проникая глубже, за счет рассеивания и поглощения биокомпонентами (например, белками).

Также известно, что на способность достигать поверхности Земли УФ лучей влияют многие внешние факторы: концентрация атмосферного озона, высота солнца над горизонтом, его положение над уровнем моря, уровень атмосферного рассеивания, наличие и плотность облаков, степень отражения УФ-лучей от поверхности (воды, почвы, снега, льда).
Истощение озонового слоя Земли может привести к губительным последствиям для здоровья не только людей, но и флоры и фауны, так как увеличится воздействие и процент проникновения УФ лучей на Землю.

IR-

Инфракрасные лучи — электромагнитное излучение, занимающее спектральную область между красным концом видимого света и микроволновым радиоизлучением.
Инфракрасное излучение мы по большей части получаем от ламп накаливания и тепла человеческого тела. Также оно составляет около 50% излучения солнца.
По большому счету, когда мы ощущаем жар и тепло от солнца, это и есть инфракрасное (тепловое) излучение.

Что такое РА+++?

РА (Protection Grade of UVA) – фактор защиты, который изначально широко использовался только в странах Азии. В то время, как в Европе, Америке и Австралии для этих целей всегда использовался SPF (Sun Protection Factor).
На сегодняшний день РА фактор защиты и способы его измерения применяются по всему свету, так как не существует общемирового протокола для тестирования и обозначения степени защиты от УФ-лучей.
РА+ означает, что вы можете провести на солнце до 4 часов;
РА++ — до 8;
РА+++ — более 8 часов защиты от UVA излучения.

Глубина и воздействие УФ-лучей на кожу

Если воздействие ультрафиолета на кожу превышает ее естественную защитную функцию (образование загара), то это приводит к ожогам и покраснениям.
Самое распространенное и известное нам последствие негативного влияния УФ-лучей – это образование эритемы или солнечный ожог. Постоянное и интенсивное воздействие UVA-лучей приводит к образованию мутаций (это называется ультрафиолетовый мутагенез) и повреждению процесса ДНК, что может вызвать образование меланомы (рак кожи). Считается, что 86% случаев заболевания меланомой обусловлено чрезмерным воздействием ультрафиолета.
Также УФ лучи способны проникать в глубокие слои эпидермиса, вызывая преждевременное старение кожи и разрушение структуры коллагена. В результате кожа становится более грубой, сосудистой, появляются расширенные поры, пигментация.
Конечно, факторы повреждения кожи зависят и от ее типа. Например, люди со светлой кожей наиболее восприимчивы к негативным последствиям воздействия УФ лучей.

Когда и какой уровень защиты SPF использовать?

SPF (Sun Protection Factor) является индикатором степени защиты от УФ-лучей, то есть обозначает, сколько по времени мы можем находиться под воздействием солнца без негативных последствий.
Например, если вы можете находиться на солнцепеке 10 минут без покраснения кожи и солнечного ожога, то средство SPF 10 увеличит это время до 100 минут, а SPF 30 – до 300 минут.
При выборе степени защиты надо также учитывать активность солнца, ландшафт, высоту над уровнем моря (равнина или горы) и облачность. Одним из самых главных факторов выбора средства защиты от солнца является фототип. Чем светлее кожа, тем более высокую степень защиты необходимо использовать. Но также нельзя сказать, что людям с темной кожей не нужно использовать средства с SPF.


1) Солнцезащитный крем для лица Dry Touch Sun Care Cream SPF 50+, Clarins
2) Солнцезащитное молочко для тела Let’s Chill SPF 15, Mixit
3) Солнцезащитное cпрей для тела Virtu Oil Body Mist SPF 30, Clinque
4) Средство для загара лица против старения Sublime Tan SPF 30, Eisenberg


SPF фактор указывает и то, какой процент УФ-лучей пропускает солнцезащитное средство. Например, SPF 50 будет пропускать 2%, а SPF 30 немногим более 3%.
Солнцезащитные средства могут содержать как физические, так и химические фильтры. Принцип действия физических фильтров заключается в отражении УФ-лучей. Как правило, содержащие их средства более плотные, трудно впитываются и могут оставлять белый налет. Такие продукты начинают работать сразу после нанесения на кожу.
Химические фильтры поглощают УФ-лучи. Текстура подобных средств более легкая и нежная. Но наносить солнцезащитные средства с хим.фильтрами следует за 20-25 мин минут до воздействия ультрафиолета.
Самые оптимальные солнцезащитные средства – сочетающие в себе физические и химические фильтры. Такой подход позволяет сделать текстуру более легкой, но при этом усилить защиту от УФ лучей.
Не стоит забывать о том, что дерматологи рекомендуют обновлять средства SPF каждые два часа и каждый раз после купания, даже если вы используете водостойкое средство.

Читайте также: Не кремом единым: выбираем солнцезащитное средство по текстуре.

Виды радиоактивных излучений

Навигация по статье:

Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.


Что такое радиация


Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют — ионизирующее излучение или что чаще встречается радиоактивное излучение, или еще проще радиация. К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Радиация — это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация — это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.

Виды радиации

Альфа, бета и нейтронное излучение — это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение — это излучение энергии.




Альфа излучение

  • излучаются: два протона и два нейтрона
  • проникающая способность: низкая
  • облучение от источника: до 10 см
  • скорость излучения: 20 000 км/с
  • ионизация: 30 000 пар ионов на 1 см пробега
  • биологическое действие радиации:
    высокое


Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа излучение — это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.



Нейтронное излучение

  • излучаются: нейтроны
  • проникающая способность: высокая
  • облучение от источника: километры
  • скорость излучения: 40 000 км/с
  • ионизация: от 3000 до 5000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Нейтронное излучение — это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.



Бета излучение

  • излучаются: электроны или позитроны
  • проникающая способность: средняя
  • облучение от источника: до 20 м
  • скорость излучения: 300 000 км/с
  • ионизация: от 40 до 150 пар ионов на 1 см пробега
  • биологическое действие радиации: среднее


Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.



Гамма излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность: высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Гамма (γ) излучение — это энергетическое электромагнитное излучение в виде фотонов.

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Основная опасность гамма излучения — это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.



Рентгеновское излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность:высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Рентгеновское излучение — это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.

Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!




Сравнительная таблица с характеристиками различных видов радиации


характеристикаВид радиации
Альфа излучениеНейтронное излучениеБета излучениеГамма излучениеРентгеновское излучение
излучаютсядва протона и два нейтронанейтроныэлектроны или позитроныэнергия в виде фотоновэнергия в виде фотонов
проникающая способностьнизкаявысокаясредняявысокаявысокая
облучение от источникадо 10 смкилометрыдо 20 мсотни метровсотни метров
скорость излучения20 000 км/с40 000 км/с300 000 км/с300 000 км/с300 000 км/с
ионизация, пар на 1 см пробега30 000от 3000 до 5000от 40 до 150от 3 до 5от 3 до 5
биологическое действие радиациивысокоевысокоесреднеенизкоенизкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.


Коэффициент k
Вид излучения и диапазон энергийВесовой множитель
Фотоны всех энергий (гамма излучение)1
Электроны и мюоны всех энергий (бета излучение)1
Нейтроны с энергией < 10 КэВ (нейтронное излучение)5
Нейтроны от 10 до 100 КэВ (нейтронное излучение)10
Нейтроны от 100 КэВ до 2 МэВ (нейтронное излучение)20
Нейтроны от 2 МэВ до 20 МэВ (нейтронное излучение)10
Нейтроны > 20 МэВ (нейтронное излучение)5
Протоны с энергий > 2 МэВ (кроме протонов отдачи)5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение)20

Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.


Видео: Виды радиации


воздействие. Вредные солнечные лучи :: SYL.ru

Особенности воздействия прямых солнечных лучей на организм сегодня интересуют многих, в первую очередь тех, кто желает провести лето с пользой для себя, запастись солнечной энергией и приобрести красивый здоровый загар. Что же собой представляет солнечное излучение и какое влияние оно оказывает на нас?

Определение

Солнечные лучи (фото ниже) — это поток радиации, которая представлена электромагнитными колебаниями волн, имеющих разную длину. Спектр излучения, испускаемого солнцем, разнообразен и широк как по длине и частоте волны, так и по воздействию на человеческий организм.

Виды солнечных лучей

Различают несколько областей спектра:

  1. Гамма-излучение.
  2. Рентгеновское излучение (длина волны — менее 170 нанометров).
  3. Ультрафиолетовое излучение (длина волны — 170-350 нм).
  4. Солнечный свет (длина волны — 350-750 нм).
  5. Инфракрасный спектр, оказывающий тепловое воздействие (длин волны — более 750 нм).

В плане биологического влияния на живой организм самыми активными являются ультрафиолетовые солнечные лучи. Они способствуют образованию загара, оказывают гормонопротективное воздействие, стимулируют выработку серотонина и других важных компонентов, повышающих жизненный тонус и жизнеспособность.

Ультрафиолетовое излучение

В ультрафиолетовом спектре выделяют 3 класса лучей, которые по-разному воздействуют на организм:

  1. А-лучи (длина волны — 400-320 нанометров). Обладают наименьшим уровнем радиации, в солнечном спектре на протяжении дня и года остаются постоянными. Для них почти не существует преград. Вредное влияние солнечных лучей этого класса на организм наиболее низкое, вместе с тем их постоянное присутствие убыстряет процесс естественного старения кожи, потому как, проникая до росткового слоя, они повреждают структуру и основание эпидермиса, разрушая волокна эластина и коллагена.
  2. В-лучи (длина волны — 320-280 нм). Лишь в определенные время года и часы дня доходят до Земли. В зависимости от географической широты и температуры воздуха обычно проникают в атмосферу с 10 до 16 часов. Эти солнечные лучи принимают участие в активации синтеза в организме витамина Д3, что выступает их главным положительным свойством. Однако при длительном воздействии на кожу они способны изменить геном клеток таким образом, что они безудержно начинают размножаться и формировать рак.
  3. С-лучи (длина волны — 280-170 нм). Это самая опасная часть спектра УФ-излучения, безоговорочно провоцирующая развитие рака. Но в природе все очень мудро устроено, и вредные солнечные лучи С, как и большая часть (90 процентов) В-лучей, поглощаются озоновым слоем, не доходя до поверхности Земли. Так природа охраняет все живое от вымирания.

Положительное и отрицательное влияние

В зависимости от длительности, интенсивности, периодичности воздействия УФ-излучения в человеческом организме развиваются положительные и отрицательные эффекты. К первым можно отнести образование витамина Д, выработку меланина и формирование красивого, ровного загара, синтез регулирующих биоритмы медиаторов, выработку важного регулятора эндокринной системы – серотонина. Вот поэтому мы после лета чувствуем прилив сил, рост жизненного тонуса, хорошее настроение.

Отрицательные эффекты ультрафиолетового воздействия заключаются в ожогах кожи, повреждении коллагеновых волокон, появлении дефектов косметологического характера в виде гиперпигментации, провоцировании раковых заболеваний.

Синтез витамина Д

При воздействии на эпидермис энергия солнечного излучения преобразуется в тепло или расходуется на фотохимические реакции, в результате которых в организме осуществляются различные биохимические процессы.

Поступление витамина Д происходит двумя путями:

  • эндогенным — за счет образования в коже под воздействием УФ-лучей В;
  • экзогенным — за счет поступления с пищей.

Эндогенный путь – это довольно сложный процесс реакций, протекающих без участия ферментов, но при обязательном участии УФ-облучения В-лучами. При достаточной и регулярной инсоляции количество витамина Д3, синтезируемого в коже во время фотохимических реакций, в полной мере обеспечивает все потребности организма.

Загар и витамин Д

Активность фотохимических процессов в коже напрямую зависит от спектра и интенсивности воздействия ультрафиолетового облучения и находится в обратной зависимости от загара (степени пигментации). Доказано, что чем более выражен загар, тем больше времени нужно для накопления провитамина Д3 в коже (вместо пятнадцати минут три часа).

С точки зрения физиологии это объяснимо, поскольку загар — это защитный механизм нашей кожи, и образовавшийся в ней слой меланина выполняет функцию определенного барьера на пути как УФ-лучей В, служащих медиатором фотохимических процессов, так и лучей класса А, которые обеспечивают термическую стадию превращения в коже провитамина Д3 в витамин Д3.

А вот поступающий с пищей витамин Д только компенсирует дефицит в случае недостаточной выработки в процессе фотохимического синтеза.

Образование витамина Д при нахождении на солнце

Сегодня уже установлено наукой, что для обеспечения суточной потребности в эндогенном витамине Д3 достаточно пребывать под открытыми солнечными УФ-лучами класса В в течение десяти-двадцати минут. Другое дело, что такие лучи в солнечном спектре присутствуют не всегда. Их наличие зависит как от сезона года, так и от географической широты, поскольку Земля при вращении меняет толщину и угол атмосферного слоя, через который солнечные лучи проходят.

Поэтому излучение солнца не постоянно способно образовывать в коже витамин Д3, а только тогда, когда в спектре присутствуют УФ-лучи В.

Солнечное излучение в России

В нашей стране с учетом географического расположения богатые УФ-лучами класса В периоды солнечного излучения распределяются неравномерно. Например, в Сочи, Махачкале, Владикавказе они длятся около семи месяцев (с марта по октябрь), а в Архангельске, Санкт-Петербурге, Сыктывкаре продолжаются около трех (с мая по июль) или даже меньше. Прибавьте к этому число пасмурных дней в году, задымленность атмосферы в крупных городах, и становится ясно, что большая часть жителей России испытывает нехватку гормонотропного солнечного воздействия.

Вероятно, поэтому интуитивно мы стремимся к солнцу и рвемся на южные пляжи, при этом забывая, что солнечные лучи на юге абсолютно другие, непривычные нашему организму, и, кроме ожогов, могут спровоцировать сильнейшие гормональные и иммунные всплески, способные увеличить риск онкологических и иных недугов.

Вместе с тем южное солнце способно исцелять, просто во всем должен соблюдаться разумный подход.

понятие, сущность, примеры и задача

 

Наряду с такими понятиями как точка, отрезок, прямая, в геометрии существует и еще одно понятие. Оно имеет название луч. Луч — это часть прямой, ограниченная с одной стороны точкой, а с другой стороны — бесконечная, т.е. ни чем не ограниченная.

Можно провести аналогию с природой. Например, луч света, который мы можем направить с земли в космос. С одной стороны он ограничен, а с другой стороны — нет. Каждый луч имеет одну крайнюю точку, в которой он начинается. Она называется началом луча.

Если взять произвольную прямую a, и отметим на ней некоторую точку О, то эта точка разобьет нашу прямую на две части. Каждая из которых будем лучом. Точка О будет принадлежать каждому из этих лучей. Точка О будет в данном случае началом этих двух лучей.

Луч обычно обозначают одной латинской буквой. На рисунке ниже представлен луч k.

Также можно обозначать луч двумя большими латинским буквами. При этом первая из них — это точка, в которой лежит начало луча. Вторая — это точка которая принадлежит лучу или другими словами — через которую луч проходит.

На рисунке представлен луч ОС. 

Еще одним способом обозначения луча, является указание начальной точки луча и прямой, которой этот луч принадлежит. Например, на рисунке ниже представлен луч Оk.

Иногда говорят, что луч исходит из точки О. Это значит, что точка О является началом луча. Лучи еще иногда называют полупрямыми.

Задача: 

Проведите прямую, и отметьте на ней точки A B и на отрезке AB отметьте точку C. Среди лучей АB, BC, CA, AC и BA найдите пары совпадающих лучей.

Решение:

Лучи совпадают, если они лежат на одной прямой и имеют общее начало и ни один из них не является продолжением другого луча.
По рисунку видно, что этим условиям удовлетворяют лучи AB и AC, а также лучи BC и BA. Следовательно, они являются совпадающими.

Ответ: AB и AC, BC и BA.

Нужна помощь в учебе?



Предыдущая тема: Провешивание прямой на местности: примеры и картинки
Следующая тема:&nbsp&nbsp&nbspУгол: понятие, определение и виды углов на рисунках

Все неприличные комментарии будут удаляться.

лучей — это… Что такое лучей?

  • ИНТЕРФЕРЕНЦИЯ ПОЛЯРИЗОВАННЫХ ЛУЧЕЙ — света, явление, возникающее при сложении когерентных поляризованных световых колебаний (см. ПОЛЯРИЗАЦИЯ СВЕТА). Наибольший контраст интерференционной картины наблюдается при сложении колебаний одного вида поляризации (линейных, круговых,… …   Физическая энциклопедия

  • Дифракция рентгеновских лучей —         рассеяние рентгеновских лучей кристаллами (или молекулами жидкостей и газов), при котором из начального пучка лучей возникают вторичные отклонённые пучки той же длины волны, появившиеся в результате взаимодействия первичных рентгеновских… …   Большая советская энциклопедия

  • Трассировка лучей — У этого термина существуют и другие значения, см. Трассировка (значения). Трассировка лучей (англ. Ray tracing; рейтрейсинг) один из методов геометрической оптики исследование оптических систем путём отслеживания взаимодействия отдельных… …   Википедия

  • Сведение лучей — У этого термина существуют и другие значения, см. Сведение. Магниты регулировки сведения лучей в кинескопе с планарным расположением пушек Под свед …   Википедия

  • Преломление рентгеновских лучей — физический процесс взаимодействия электромагнитных волн рентгеновского диапазона с поверхностью, сопровождающийся изменением направления волнового фронта на границе двух сред с разными оптическими свойствами.Является разновидностью полного… …   Википедия

  • АБСОЛЮТНЫЙ ИЗМЕРИТЕЛЬ ЖЕСТКОСТИ РЕНТГЕНОВСКИХ ЛУЧЕЙ — АБСОЛЮТНЫЙ ИЗМЕРИТЕЛЬ ЖЕСТКОСТИ РЕНТГЕНОВСКИХ ЛУЧЕЙ, введен в рентгенотерапию Христеном (Christen) для определения жесткости лучей по тому слою мягких тканей, к рый поглощает половину лучей, излучаемых трубкой (по т. н. Halb wertschicht у). Он… …   Большая медицинская энциклопедия

  • ДИФРАКЦИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ — явление, возникающее при упругом рассеянии рентгеновского излучения в кристаллах, аморфных телах, жидкостях или газах и состоящее в появлении отклонённых (дифрагированных) лучей, распространяющихся под определёнными углами к первичному пучку. Д.… …   Физическая энциклопедия

  • Влияние гамма-лучей на поведение маргариток — The Effect of Gamma Rays on Man in the Moon Marigolds …   Википедия

  • ЖЕСТКОСТЬ ЛУЧЕЙ — ЖЕСТКОСТЬ ЛУЧЕЙ, термин, применяемый в рентгенологии для характеристики степени проницаемости рентгеновскихлучей. Ж. л. зависит от длины волны рентгеновских лучей, излучаемых трубкой: Ж. тем больше, чем длина их короче. Длина же волны… …   Большая медицинская энциклопедия

  • Закон независимого распространения лучей — Закон независимого распространения лучей  второй закон геометрической оптики, который утверждает, что световые лучи распространяются независимо друг от друга. Так, например, при установке непрозрачного экрана на пути пучка световых лучей… …   Википедия

  • Инфракрасное излучение — Википедия

    Изображение собаки, полученное в инфракрасном излучении

    Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны[1] λ = 0,74 мкм[2] и частотой 430 ТГц) и микроволновым радиоизлучением (λ ~ 1—2 мм, частота 300 ГГц)[3].

    Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50 % излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приёмниками, а также специальными фотоматериалами[4].

    Весь диапазон инфракрасного излучения условно делят на три области:

    • ближняя: λ = 0,74—2,5 мкм;
    • средняя: λ = 2,5—50 мкм;
    • дальняя: λ = 50—2000 мкм[5].

    Длинноволновую окраину этого диапазона иногда выделяют в отдельный диапазон электромагнитных волн — терагерцевое излучение (субмиллиметровое излучение).

    Инфракрасное излучение также называют «тепловым излучением», так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

    История открытия и общая характеристика[править | править код]

    Эксперимент Гершеля

    Инфракрасное излучение было открыто в 1800 году английским астрономом У. Гершелем. Занимаясь исследованием Солнца, Гершель искал способ уменьшения нагрева инструмента, с помощью которого велись наблюдения. Определяя с помощью термометров действия разных участков видимого спектра, Гершель обнаружил, что «максимум тепла» лежит за насыщенным красным цветом и, возможно, «за видимым преломлением». Это исследование положило начало изучению инфракрасного излучения.

    Раньше лабораторными источниками инфракрасного излучения служили исключительно раскалённые тела либо электрические разряды в газах. Сейчас на основе твердотельных и молекулярных газовых лазеров созданы современные источники инфракрасного излучения с регулируемой или фиксированной частотой. Для регистрации излучения в ближней инфракрасной-области (до ~1,3 мкм) используются специальные фотопластинки. Более широким диапазоном чувствительности (примерно до 25 мкм) обладают фотоэлектрические детекторы и фоторезисторы. Излучение в дальней ИК-области регистрируется болометрами — детекторами, чувствительными к нагреву инфракрасным излучением[6].

    ИК-аппаратура находит широкое применение как в военной технике (например, для наведения ракет), так и в гражданской (например, в волоконно-оптических системах связи). В качестве оптических элементов в ИК-спектрометрах используются либо линзы и призмы, либо дифракционные решётки и зеркала. Чтобы исключить поглощение излучения в воздухе, спектрометры для дальней ИК-области изготавливаются в вакуумном варианте[6].

    Поскольку инфракрасные спектры связаны с вращательными и колебательными движениями в молекуле, а также с электронными переходами в атомах и молекулах, ИК-спектроскопия позволяет получать важные сведения о строении атомов и молекул, а также о зонной структуре кристаллов[6].

    Объекты обычно испускают инфракрасное излучение во всём спектре длин волн, но иногда только ограниченная область спектра представляет интерес, поскольку датчики обычно собирают излучение только в пределах определенной полосы пропускания. Таким образом, инфракрасный диапазон часто подразделяется на более мелкие диапазоны.

    Обычная схема деления[править | править код]

    Чаще всего разделение на более мелкие диапазоны производится следующим образом:[7]

    АббревиатураДлина волныЭнергия фотоновХарактеристика
    Near-infrared, NIR0,75—1,4 мкм0,9—1,7 эВБлижний ИК, ограниченный с одной стороны видимым светом, с другой — прозрачностью воды, значительно ухудшающейся при 1,45 мкм. В этом диапазоне работают широко распространенные инфракрасные светодиоды и лазеры для систем волоконной и воздушной оптической связи. Видеокамеры и приборы ночного видения на основе ЭОП также чувствительны в этом диапазоне.
    Short-wavelength infrared, SWIR1,4—3 мкм0,4—0,9 эВПоглощение электромагнитного излучения водой значительно возрастает при 1450 нм. Диапазон 1530—1560 нм преобладает в области дальней связи.
    Mid-wavelength infrared, MWIR3—8 мкм150—400 мэВВ этом диапазоне начинают излучать тела, нагретые до нескольких сотен градусов Цельсия. В этом диапазоне чувствительны тепловые головки самонаведения систем ПВО и технические тепловизоры.
    Long-wavelength infrared, LWIR8—15 мкм80—150 мэВВ этом диапазоне начинают излучать тела с температурами около нуля градусов Цельсия. В этом диапазоне чувствительны тепловизоры для приборов ночного видения.
    Far-infrared, FIR15— 1000 мкм1,2—80 мэВ

    CIE схема[править | править код]

    Международная комиссия по освещённости (англ. International Commission on Illumination) рекомендует разделение инфракрасного излучения на следующие три группы[8]:

    • IR-A: 700 нм — 1400 нм (0,7 мкм — 1,4 мкм)
    • IR-B: 1400 нм — 3000 нм (1,4 мкм — 3 мкм)
    • IR-C: 3000 нм — 1 мм (3 мкм — 1000 мкм)

    ISO 20473 схема[править | править код]

    Международная организация по стандартизации предлагает следующую схему:

    ОбозначениеАббревиатураДлина волны
    Ближний инфракрасный диапазонNIR0,78—3 мкм
    Средний инфракрасный диапазонMIR3—50 мкм
    Дальний инфракрасный диапазонFIR50—1000 мкм

    Астрономическая схема[править | править код]

    Астрономы обычно делят инфракрасный спектр следующим образом[9]:

    ОбозначениеАббревиатураДлина волны
    Ближний инфракрасный диапазонNIR(0.7…1) — 5 мкм
    Средний инфракрасный диапазонMIR5 — (25…40) мкм
    Дальний инфракрасный диапазонFIR(25…40) — (200…350) мкм

    Теплово́е излуче́ние или лучеиспускание — передача энергии от одних тел к другим в виде электромагнитных волн, излучаемых телами за счёт их внутренней энергии. Тепловое излучение в основном приходится на инфракрасный участок спектра от 0,74 мкм до 1000 мкм. Отличительной особенностью лучистого теплообмена является то, что он может осуществляться между телами, находящимися не только в какой-либо среде, но и вакууме. Примером теплового излучения является свет от лампы накаливания. Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно чёрного тела, описывается законом Стефана — Больцмана. Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа. Тепловое излучение является одним из трёх элементарных видов переноса тепловой энергии (помимо теплопроводности и конвекции). Равновесное излучение — тепловое излучение, находящееся в термодинамическом равновесии с веществом.

    Органы восприятия человека и других высших приматов не приспособлены под инфракрасное излучение (проще говоря, человеческий глаз его не видит), однако, некоторые биологические виды способны воспринимать органами зрения инфракрасное излучение. Так, например, зрение некоторых змей позволяет им видеть в инфракрасном диапазоне и охотиться на теплокровную добычу ночью (когда её силуэт обладает наиболее выраженным контрастом на фоне остывшей местности). Более того, у обыкновенных удавов эта способность имеется одновременно с нормальным зрением, в результате чего они способны видеть окружающее одновременно в двух диапазонах: нормальном видимом (как и большинство животных) и инфракрасном. Среди рыб способностью видеть под водой в инфракрасном диапазоне отличаются такие рыбы как пиранья, охотящаяся на зашедших в воду теплокровных животных, и золотая рыбка. Среди насекомых инфракрасным зрением обладают комары, что позволяет им с большой точностью ориентироваться на наиболее насыщенные кровеносными сосудами участки тела добычи[10].

    Прибор ночного видения[править | править код]

    Существует несколько способов визуализировать невидимое инфракрасное изображение:

    • Современные полупроводниковые видеокамеры чувствительны в ближнем ИК. Во избежание ошибок цветопередачи обычные бытовые видеокамеры снабжаются специальным фильтром, отсекающим ИК изображение. Камеры для охранных систем, как правило, не имеют такого фильтра. Однако в темное время суток нет естественных источников ближнего ИК, поэтому без искусственной подсветки (например, инфракрасными светодиодами) такие камеры ничего не покажут.
    • Электронно-оптический преобразователь — вакуумный фотоэлектронный прибор, усиливающий свет видимого спектра и ближнего ИК. Имеет высокую чувствительность и способен давать изображение при очень низкой освещенности. Являются исторически первыми приборами ночного видения, широко используются и в настоящее время в дешевых ПНВ. Поскольку работают только в ближнем ИК, то, как и полупроводниковые видеокамеры, требуют наличия освещения.
    • Болометр — тепловой сенсор. Болометры для систем технического зрения и приборов ночного видения чувствительны в диапазоне длин волн 3—14 мкм (средний ИК), что соответствует излучению тел, нагретых от 500 до −50 градусов Цельсия. Таким образом, болометрические приборы не требуют внешнего освещения, регистрируя излучение самих предметов и создавая картинку разности температур.

    Термография[править | править код]

    Изображение девушки, полученное в инфракрасном диапазоне

    Инфракрасная термография, тепловое изображение или тепловое видео — это научный способ получения термограммы — изображения в инфракрасных лучах, показывающего картину распределения температурных полей. Термографические камеры или тепловизоры обнаруживают излучение в инфракрасном диапазоне электромагнитного спектра (примерно 900—14000 нанометров) и на основе этого излучения создают изображения, позволяющие определить перегретые или переохлаждённые места. Так как инфракрасное излучение испускается всеми объектами, имеющими температуру, согласно формуле Планка для излучения чёрного тела, термография позволяет «видеть» окружающую среду с или без видимого света. Величина излучения, испускаемого объектом, увеличивается с повышением его температуры, поэтому термография позволяет нам видеть различия в температуре. Когда смотрим через тепловизор, то тёплые объекты видны лучше, чем охлаждённые до температуры окружающей среды; люди и теплокровные животные легче заметны в окружающей среде, как днём, так и ночью. Как результат, продвижение использования термографии может быть приписано военным и службам безопасности.

    Инфракрасное самонаведение[править | править код]

    Инфракрасная головка самонаведения — головка самонаведения, работающая на принципе улавливания волн инфракрасного диапазона, излучаемых захватываемой целью. Представляет собой оптико-электронный прибор, предназначенный для идентификации цели на окружающем фоне и выдачи в автоматическое прицельное устройство (АПУ) сигнала захвата, а также для измерения и выдачи в автопилот сигнала угловой скорости линии визирования.

    Инфракрасный обогреватель[править | править код]

    Инфракрасное излучение повсеместно применяют для обогрева помещений и уличных пространств. Инфракрасный обогреватель — отопительный прибор, отдающий тепло преимущественно излучением, а не конвекцией — используется для организации дополнительного или основного отопления в помещениях (домах, квартирах, офисах и т. п.), а также для локального обогрева уличного пространства (уличные кафе, беседки, веранды)[11].

    Инфракрасный обогреватель в быту иногда неточно называется рефлектором. Лучистая энергия поглощается окружающими поверхностями, превращаясь в тепловую энергию, нагревает их, которые в свою очередь отдают тепло воздуху. Это дает существенный экономический эффект по сравнению с конвекционным обогревом, где тепло существенно расходуется на обогрев неиспользуемого подпотолочного пространства. Кроме того, при помощи ИК обогревателей появляется возможность местного обогрева только тех площадей в помещении, в которых это необходимо без обогрева всего объёма помещения; тепловой эффект от инфракрасных обогревателей ощущается сразу после включения, что позволяет избежать предварительного нагрева помещения. Эти факторы снижают затраты энергии.

    При покраске[править | править код]

    Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей. Инфракрасный метод сушки имеет существенные преимущества перед традиционным, конвекционным методом. В первую очередь это, безусловно, экономический эффект: процесс идёт гораздо быстрее, а энергии, при этом, затрачивается гораздо меньше, чем при традиционных методах.

    Инфракрасная астрономия[править | править код]

    Раздел астрономии и астрофизики, исследующий космические объекты, видимые в инфракрасном излучении. При этом под инфракрасным излучением подразумевают электромагнитные волны с длиной волны от 0,74 до 2000 мкм. Инфракрасное излучение находится в диапазоне между видимым излучением, длина волны которого колеблется от 380 до 750 нанометров, и субмиллиметровым излучением.

    Инфракрасная астрономия начала развиваться в 1830-е годы, спустя несколько десятилетий после открытия инфракрасного излучения Уильямом Гершелем. Первоначально прогресс был незначительным и до начала 20 века отсутствовали открытия астрономических объектов в инфракрасном диапазоне помимо Солнца и Луны, однако после ряда открытий, сделанных в радиоастрономии в 1950-х и 1960-х годах, астрономы осознали наличие большого объёма информации, находящегося вне видимого диапазона волн. С тех пор была сформирована современная инфракрасная астрономия.

    Инфракрасная спектроскопия[править | править код]

    Инфракрасная спектроскопия — раздел спектроскопии, охватывающий длинноволновую область спектра (>730 нм за красной границей видимого света). Инфракрасные спектры возникают в результате колебательного (отчасти вращательного) движения молекул, а именно — в результате переходов между колебательными уровнями основного электронного состояния молекул. ИК излучение поглощают многие газы, за исключением таких как О2, N2, H2, Cl2 и одноатомных газов. Поглощение происходит на длине волны, характерной для каждого определенного газа, для СО, например, таковой является длина волны 4,7 мкм.

    По инфракрасным спектрам поглощения можно установить строение молекул различных органических (и неорганических) веществ с относительно короткими молекулами: антибиотиков, ферментов, алкалоидов, полимеров, комплексных соединений и др. Колебательные спектры молекул различных органических (и неорганических) веществ с относительно длинными молекулами (белки, жиры, углеводы, ДНК, РНК и др.) находятся в терагерцевом диапазоне, поэтому строение этих молекул можно установить с помощью радиочастотных спектрометров терагерцевого диапазона. По числу и положению пиков в ИК спектрах поглощения можно судить о природе вещества (качественный анализ), а по интенсивности полос поглощения — о количестве вещества (количественный анализ). Основные приборы — различного типа инфракрасные спектрометры.

    Передача данных[править | править код]

    Распространение инфракрасных светодиодов, лазеров и фотодиодов позволило создать беспроводной оптический метод передачи данных на их основе. В компьютерной технике обычно используется для связи компьютеров с периферийными устройствами (интерфейс IrDA) В отличие от радиоканала инфракрасный канал нечувствителен к электромагнитным помехам, и это позволяет использовать его в производственных условиях. К недостаткам инфракрасного канала относятся необходимость в оптических окнах на оборудовании, правильной взаимной ориентации устройств. На данный момент существует большое количество производителей сетевого оборудования, основанного на передаче света в атмосфере (FSO), как правило это точка – точка. Сейчас учёными достигнута скорость передачи данных в атмосфере более 4 Тбит/с. При этом известны серийно выпускаемые терминалы связи со скоростью до 100 Гбит/с. В условиях прямой видимости инфракрасный канал может обеспечить связь на расстояниях в несколько километров. О скрытности канала связи не приходится и говорить, так как ИК диапазон не виден человеческому глазу (без использование специального прибора), и угловая расходимость канала связи не превышает 17 мкрад по всем осям.

    Тепловое излучение применяется также для приёма сигналов оповещения[12].

    Дистанционное управление[править | править код]

    Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах, некоторых мобильных телефонах (инфракрасный порт) и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

    Интересно, что инфракрасное излучение бытового пульта дистанционного управления легко фиксируется с помощью дешёвых цифровых фотоаппаратов или видеокамер с ночным режимом, в которых нет специального инфракрасного фильтра.

    Медицина[править | править код]

    Наиболее широко инфракрасное излучение в медицине применяется в различных датчиках потока крови (PPG).

    Широко распространённые измерители частоты пульса (ЧСС, HR — Heart Rate) и насыщения крови кислородом (SpO2) используют светодиоды зелёного (для пульса) и красного и инфракрасного (для SpO2) излучений.

    Излучение инфракрасного лазера используется в методике DLS (Digital Light Scattering) для определения частоты пульса и характеристик потока крови.

    Инфракрасные лучи применяются в физиотерапии.

    Влияние длинноволнового инфракрасного излучения:

    • Стимуляция и улучшение кровообращения. При воздействии длинноволнового инфракрасного излучения на кожный покров происходит раздражение рецепторов кожи и, вследствие реакции гипоталамуса, расслабляются гладкие мышцы кровеносных сосудов, в результате сосуды расширяются.
    • Улучшение процессов метаболизма. При тепловом воздействии инфракрасного излучения стимулируется активность на клеточном уровне, улучшаются процессы нейрорегуляции и метаболизма.

    Стерилизация пищевых продуктов[править | править код]

    С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции[источник не указан 554 дня].

    Пищевая промышленность[править | править код]

    Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа и мука, на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал, белок, липиды). Конвейерные сушильные транспортёры с успехом могут использоваться при закладке зерна в зернохранилища и в мукомольной промышленности.

    Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо.

    Проверка денег на подлинность[править | править код]

    Инфракрасный излучатель применяется в приборах для проверки денег. Нанесённые на купюру как один из защитных элементов специальные метамерные краски возможно увидеть исключительно в инфракрасном диапазоне. Инфракрасные детекторы валют являются самыми безошибочными приборами для проверки денег на подлинность[источник не указан 3224 дня]. Нанесение на купюру инфракрасных меток, в отличие от ультрафиолетовых, фальшивомонетчикам обходится дорого и соответственно экономически невыгодно[источник не указан 554 дня]. Потому детекторы банкнот со встроенным ИК излучателем, на сегодняшний день, являются самой надёжной защитой от подделок[источник не указан 554 дня].

    Очень сильное инфракрасное излучение в местах высокого нагрева может высушивать слизистую оболочку глаз. Наиболее опасно, когда излучение не сопровождается видимым светом. В таких ситуациях необходимо надевать специальные защитные очки для глаз[13].

    Инфракрасное излучение с длиной волны 1.35 мкм, 2.2 мкм при достаточной пиковой мощности в лазерном импульсе может вызывать эффективное разрушение молекул ДНК, более сильное, чем излучение в ближнем ИК-диапазоне[14].

    Поверхность Земли и облака поглощают видимое и невидимое излучение от Солнца и переизлучают большую часть поглощённой энергии в виде инфракрасного излучения обратно в атмосферу. Некоторые вещества в атмосфере, главным образом капли воды и водяной пар, а также диоксид углерода, метан, азот, гексафторид серы и хлорфторуглерод поглощают это инфракрасное излучение и вновь излучают его во всех направлениях, включая обратно на Землю. Таким образом, парниковый эффект удерживает атмосферу и поверхность в более нагретом состоянии, чем если бы инфракрасные поглотители отсутствовали в атмосфере[15][16].

    Космические лучи — Википедия

    Дифференциальный энергетический спектр космических лучей носит степенной характер (в дважды логарифмическом масштабе — наклонная прямая) (минимальные энергии — жёлтая зона, солнечная модуляция; средние энергии — синяя зона, ГКЛ; максимальные энергии — пурпурная зона, внегалактические КЛ)

    Косми́ческие лучи́ — элементарные частицы и ядра атомов, движущиеся с высокими энергиями в космическом пространстве[1][2].

    Физику космических лучей принято считать частью физики высоких энергий и физики элементарных частиц.

    Физика космических лучей изучает:

    • процессы, приводящие к возникновению и ускорению космических лучей;
    • частицы космических лучей, их природу и свойства;
    • явления, вызванные частицами космических лучей в космическом пространстве, атмосфере Земли и планет.

    Изучение потоков высокоэнергетичных заряженных и нейтральных космических частиц, попадающих на границу атмосферы Земли, является важнейшими экспериментальными задачами.

    Классификация по происхождению космических лучей:

    • вне нашей Галактики;
    • в нашей Галактике;
    • на Солнце;
    • в межпланетном пространстве.

    Первичными принято называть внегалактические, галактические и солнечные космические лучи.

    Вторичными космическими лучами принято называть потоки частиц, возникающих под действием первичных космических лучей в атмосфере Земли и регистрирующихся на поверхности Земли.

    Космические лучи являются составляющей естественной радиации (фоновой радиации) на поверхности Земли и в атмосфере.

    До развития ускорительной техники космические лучи служили единственным источником элементарных частиц высокой энергии. Так, позитрон и мюон были впервые найдены в космических лучах.

    Энергетический спектр космических лучей на 43 % состоит из энергии протонов, ещё на 23 % — из энергии ядер гелия (альфа-частиц) и на 34 % из энергии, переносимой остальными частицами[3][нет в источнике].

    По количеству частиц космические лучи на 92 % состоят из протонов, на 6 % — из ядер гелия, около 1 % составляют более тяжёлые элементы, и около 1 % приходится на электроны[3][4]. При изучении источников космических лучей вне Солнечной системы протонно-ядерная компонента в основном обнаруживается по создаваемому ею потоку гамма-лучей орбитальными гамма-телескопами, а электронная компонента — по порождаемому ею синхротронному излучению, которое приходится на радиодиапазон (в частности, на метровые волны — при излучении в магнитном поле межзвёздной среды), а при сильных магнитных полях в районе источника космических лучей — и на более высокочастотные диапазоны. Поэтому электронная компонента может обнаруживаться и наземными астрономическими инструментами[5][1].

    Традиционно частицы, наблюдаемые в КЛ, делят на следующие группы: p (Z=1),{\displaystyle (Z=1),} α (Z=2),{\displaystyle (Z=2),} L (Z=3…5),{\displaystyle (Z=3…5),} M (Z=6…9),{\displaystyle (Z=6…9),} H (Z⩾10),{\displaystyle (Z\geqslant 10),} VH (Z⩾20){\displaystyle (Z\geqslant 20)} (соответственно, протоны, альфа-частицы, лёгкие, средние, тяжёлые и сверхтяжёлые). Особенностью химического состава первичного космического излучения является аномально высокое (в несколько тысяч раз) содержание ядер группы L (литий, бериллий, бор) по сравнению с составом звёзд и межзвёздного газа[3]. Данное явление объясняется тем, что механизм генерации космических частиц в первую очередь ускоряет тяжёлые ядра, которые при взаимодействии с протонами межзвёздной среды распадаются на более лёгкие ядра[4]. Данное предположение подтверждается тем, что КЛ обладают очень высокой степенью изотропии.

    Впервые указание на возможность существования ионизирующего излучения внеземного происхождения было получено в начале XX века в опытах по изучению проводимости газов. Обнаруженный спонтанный электрический ток в газе не удавалось объяснить ионизацией, возникающей от естественной радиоактивности Земли. Наблюдаемое излучение оказалось настолько проникающим, что в ионизационных камерах, экранированных толстыми слоями свинца, всё равно наблюдался остаточный ток. В 1911—1912 годах был проведён ряд экспериментов с ионизационными камерами на воздушных шарах. Гесс обнаружил, что излучение растёт с высотой, в то время как ионизация, вызванная радиоактивностью Земли, должна была бы падать с высотой. В опытах Кольхерстера было доказано, что это излучение направлено сверху вниз.

    В 1921—1925 годах американский физик Милликен, изучая поглощение космического излучения в атмосфере Земли в зависимости от высоты наблюдения, обнаружил, что в свинце это излучение поглощается так же, как и гамма-излучение ядер. Милликен первым и назвал это излучение космическими лучами.

    В 1925 году советские физики Л. А. Тувим и Л. В. Мысовский провели измерение поглощения космического излучения в воде: оказалось, что это излучение поглощалось в десять раз слабее, чем гамма-излучение ядер. Мысовский и Тувим обнаружили также, что интенсивность излучения зависит от барометрического давления — открыли «барометрический эффект». Опыты Д. В. Скобельцына с камерой Вильсона, помещённой в постоянное магнитное поле, дали возможность «увидеть», за счёт ионизации, следы (треки) космических частиц. Д. В. Скобельцын открыл ливни космических частиц.

    Эксперименты в космических лучах позволили сделать ряд принципиальных для физики микромира открытий.

    В 1932 году Андерсон открыл в космических лучах позитрон. В 1937 году Андерсоном и Неддермейером были открыты мюоны и указан тип их распада. В 1947 году открыли π-мезоны. В 1955 году в космических лучах установили наличие К-мезонов, а также и тяжёлых нейтральных частиц — гиперонов.

    Квантовая характеристика «странность» появилась в опытах с космическими лучами. Эксперименты в космических лучах поставили вопрос о сохранении чётности, обнаружили процессы множественной генерации частиц в нуклонных взаимодействиях, позволили определить величину эффективного сечения взаимодействия нуклонов высокой энергии.

    Появление космических ракет и спутников привело к новым открытиям — обнаружению радиационных поясов Земли (февраль 1958 г., Ван Аллен и, независимо от него, июль того же года, С. Н. Вернов и А. Е. Чудаков[6]), и позволило создать новые методы исследования галактического и межгалактического пространств.

    Потоки высокоэнергичных заряженных частиц в околоземном космическом пространстве[править | править код]

    В околоземном космическом пространстве (ОКП) различают несколько типов космических лучей. К стационарным принято относить галактические космические лучи (ГКЛ), частицы альбедо и радиационный пояс. К нестационарным — солнечные космические лучи (СКЛ).

    Галактические космические лучи (ГКЛ)[править | править код]

    Галактические космические лучи (ГКЛ) состоят из ядер различных химических элементов с кинетической энергией Е более нескольких десятков МэВ/нуклон, а также электронов и позитронов с Е > 10 МэВ. Эти частицы приходят в межпланетное пространство из межзвёздной среды. Наиболее вероятными источниками космических лучей считаются вспышки сверхновых звёзд и образующиеся при этом пульсары. Электромагнитные поля пульсаров ускоряют заряженные частицы, которые затем рассеиваются на межзвёздных магнитных полях[7]. Возможно, однако, что в области Е < 100 МэВ/нуклон частицы образуются за счёт ускорения в межпланетной среде частиц солнечного ветра и межзвёздного газа. Дифференциальный энергетический спектр ГКЛ носит степенной характер.

    Вторичные частицы в магнитосфере Земли: радиационный пояс, частицы альбедо[править | править код]

    Внутри магнитосферы, как и в любом дипольном магнитном поле, есть области, недоступные для частиц с кинетической энергией E меньше критической. Те же частицы с энергией E < Eкр, которые всё-таки уже там находятся, не могут эти области покинуть. Эти запрещённые области магнитосферы называются зонами захвата. В зонах захвата дипольного (квазидипольного) поля Земли действительно удерживаются значительные потоки захваченных частиц (прежде всего, протонов и электронов).

    В околоземном пространстве можно выделить две торообразные области, расположенные в экваториальной плоскости примерно на расстоянии от 300 км (в зоне БМА) до 6000 км (внутренний РПЗ) и от 12 000 км до 40 000 км (внешний РПЗ). Основным наполнением внутреннего пояса являются протоны с высокими энергиями от 1 до 1000 МэВ, а внешнего — электроны.

    Максимум интенсивности протонов низких энергий расположен на расстояниях L ~ 3 радиусов Земли от её центра. Малоэнергичные электроны заполняют всю область захвата. Для них нет разделения на внутренний и внешний пояса. Поток протонов во внутреннем поясе довольно устойчив во времени.

    Процесс взаимодействия ядер первичного космического излучения с атмосферой сопровождается возникновением нейтронов. Поток нейтронов, идущий от Земли (нейтроны альбедо), беспрепятственно проходит сквозь магнитное поле Земли. Поскольку нейтроны нестабильны (среднее время распада ~900 с), часть из них распадается в зонах, недоступных для заряженных частиц малых энергий. Таким образом, продукты распада нейтронов (протоны и электроны) рождаются прямо в зонах захвата. В зависимости от энергии и питч-углов эти протоны и электроны могут либо оказаться захваченными, либо покинуть эту область.

    Частицы альбедо — это вторичные частицы, отражённые от атмосферы Земли. Нейтроны альбедо обеспечивают радиационный пояс протонами с энергией до 10³ МэВ и электронами с энергией до нескольких МэВ.

    Солнечные космические лучи[править | править код]

    Солнечными космическими лучами (СКЛ) называются энергичные заряженные частицы — электроны, протоны и ядра, — инжектированные Солнцем в межпланетное пространство. Энергия СКЛ простирается от нескольких кэВ до нескольких ГэВ. В нижней части этого диапазона СКЛ граничат с протонами высокоскоростных потоков солнечного ветра. Частицы СКЛ появляются вследствие солнечных вспышек.

    Космические лучи ультравысоких энергий[править | править код]

    Энергия некоторых частиц (например, частицы «Oh-My-God») превышает предел ГЗК (Грайзена — Зацепина — Кузьмина) — теоретический предел энергии для космических лучей 5⋅1019эВ, вызванный их взаимодействием с фотонами реликтового излучения. Несколько десятков таких частиц за год было зарегистрировано обсерваторией AGASA (англ.)русск.. Эти наблюдения ещё не имеют достаточно обоснованного научного объяснения.

    Долгое время после открытия космических лучей, методы их регистрации не отличались от методов регистрации частиц в ускорителях, чаще всего — газоразрядные счётчики или ядерные фотографические эмульсии, поднимаемые в стратосферу или в космическое пространство. Но данный метод не позволяет вести систематические наблюдения частиц с высокой энергией, так как они появляются достаточно редко, а пространство, в котором такой счётчик может вести наблюдения, ограничено его размерами.

    Современные обсерватории работают на других принципах. Когда высокоэнергетичная частица входит в атмосферу, она, взаимодействуя с атомами воздуха на первых 100 г/см², рождает целый шквал частиц, в основном пионов и мюонов, которые, в свою очередь, рождают другие частицы, и так далее. Образуется конус из частиц, который называют ливнем. Такие частицы двигаются со скоростью, превышающей скорость света в воздухе, благодаря чему возникает черенковское свечение, регистрируемое телескопами. Такая методика позволяет следить за областями неба площадью в сотни квадратных километров.

    Визуальный феномен космических лучей (англ.)[править | править код]

    Космонавты МКС, когда закрывают глаза, не чаще, чем раз в 3 минуты, видят вспышки света[8], возможно, это явление связано с воздействием частиц высоких энергий, попадающих в сетчатку глаза. Однако экспериментально это не подтверждено, возможно, что этот эффект имеет под собой исключительно психологические основы.

    Радиация[править | править код]

    Длительное воздействие космической радиации способно очень негативно отразиться на здоровье человека. Для дальнейшей экспансии человечества к иным планетам Солнечной системы следует разработать надёжную защиту от подобных опасностей — учёные из России и США уже ищут способы решения этой проблемы.

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о