Кто такой рентген – что это такое, виды исследования у ребенка и взрослых, преимущества метода, подготовка к обследованию и фото проведения

Содержание

биография, открытия, интересные факты из жизни

Каждый год в рамках диспансеризации огромное количество людей проходят процедуру флюорографии. Когда есть подозрение на перелом или другое повреждение костей, применяется рентгенография. Эти процедуры давно стали обыденностью, хотя, если вдуматься, они сами по себе удивительны. Кем же был человек, увековечивший свое имя, подарив миру мощный диагностический инструмент? Где и когда родился Вильгельм Рентген?

Ранние годы

Будущий ученый родился 17 марта 1845 года в городе Леннепе, на месте нынешнего Ремшайда, в Германии. Его отец был фабрикантом и занимался продажей одежды, мечтая однажды передать свое дело по наследству Вильгельму. Мать была родом из Нидерландов. Спустя три года после рождения единственного сына семья переехала в Амстердам, где будущий изобретатель начал обучение. Его первым образовательным учреждением стало частное заведение под руководством Мартинуса фон Дорна.

рентген вильгельм

Отец будущего ученого считал, что фабриканту необходимо инженерное образование, а сын был совершенно не против — его интересовала наука. В 1861 году Вильгельм Конрад Рентген перешел в Утрехтскую техническую школу, из которой вскоре был отчислен, отказавшись выдать товарища, нарисовавшего карикатуру на одного из преподавателей, когда началось внутреннее расследование.

Вылетев из школы, Рентген Вильгельм не получил никаких документов об образовании, так что поступление в высшее учебное заведение для него теперь представляло непростую задачу — он мог претендовать только на статус вольнослушателя. В 1865 году, именно с такими исходными данными, он и попытался стать студентом Утрехтского университета, однако потерпел поражение.

вильгельм конрад рентген

Обучение и работа

Тем не менее упорство сослужило ему хорошую службу. Чуть позже он все-таки стал студентом, хоть и не в Нидерландах. В соответствии с желанием отца он твердо вознамерился получить инженерное образование и стал студентом Федерального политехнического Цюрихского института. На протяжении всех лет, проведенных в его стенах, Вильгельм Конрад Рентген был особенно увлечен физикой. Постепенно он начинает проводить и свои исследования. В 1869 году он заканчивает обучение, получив диплом инженера-механика и степень доктора философии. В конце концов, решив сделать свое увлечение любимой работой, он переходит в университет и защищает диссертацию, после чего приступает к работе ассистента и начинает читать лекции студентам. Позднее он несколько раз переходит из одного учебного заведения в другое, а в 1894 году становится ректором в Вюрцбурге. Спустя 6 лет Рентген переезжает в Мюнхен, где и работает уже до завершения карьеры. Но до этого тогда было еще далеко.

Основные направления

Как и любой ученый, Вильгельм работал в самых разных научных областях. В основном немецкий физик Рентген интересовался некоторыми свойствами кристаллов, занимался изучением связи между электрическими и оптическими явлениями в них, а также проводил исследования магнетизма, на которых позднее основывалась электронная теория Лоренца. И кто знал, что изучение кристаллов позднее принесет ему всемирное признание и множество наград?

вильгельм рентген открытия

Личная жизнь

Еще во время пребывания в Цюрихском университете Вильгельм Рентген (1845-1923) встретил свою будущую супругу — Анну Берту Людвиг. Она была дочерью владелицы пансиона при институте, так что сталкиваться в свое время им приходилось довольно часто. В 1872 году они поженились. Супруги очень нежно относились друг к другу и хотели детей. Однако Анне никак не удавалось забеременеть, и тогда они удочерили осиротевшую шестилетнюю девочку, племянницу фрау Берты.

Безусловно, понимая всю важность работы мужа, жена на финальных этапах исследований старалась следить, чтобы он вовремя ел и отдыхал, в то время как ученый всецело отдавался работе, забывая о собственных нуждах. Эти долготерпение и работа были вознаграждены сполна — именно супруга послужила своеобразной моделью для демонстрации открытия: изображение ее руки с кольцом облетело весь мир.

когда вильгельм рентген открыл рентгеновские лучи

В 1919 году, когда любимой жены не стало, а приемная дочь вышла замуж, Вильгельму было уже 74 года. Несмотря на всемирную славу, он чувствовал себя страшно одиноким, внимание посторонних его даже тяготило. Кроме того, он сильно нуждался, передав все средства правительству во время Первой мировой войны. После смерти супруги он и сам прожил довольно мало, скончавшись в начале 1923 года от рака — результата постоянного взаимодействия с лучами, открытыми им же.

Рентген

Вильгельм, по большому счету, особенно и не старался сделать карьеру. Ему уже было 50 лет, а великих достижений все не было, но его это, кажется, и совершенно не интересовало — ему просто нравилось двигать науку вперед, раздвигая рамки изученного. Он допоздна засиживался в лаборатории, бесконечно проводя опыты и анализируя их результаты. Осенний вечер 1895 года не был исключением. Уходя и уже погасив свет, он заметил на катодной трубке какое-то пятно. Решив, что просто забыл ее выключить, ученый повернул рубильник. Загадочное пятно тут же исчезло, но очень заинтересовало исседователя. Несколько раз он повторил этот опыт, придя к выводу, что всему виной загадочное излучение.

Очевидно, он почувствовал, что стоит на пороге великого открытия, потому что даже жене, с которой обычно разговаривал о работе, он ничего не сказал. Следующие два месяца были всецело посвящены тому, чтобы понять свойства загадочных лучей. Между катодной трубкой и экраном Рентген Вильгельм помещал различные предметы, анализируя результаты. Бумага и дерево полностью пропускали излучение, в то время как металл и некоторые другие материалы отбрасывали тени, и их интенсивность зависела в том числе от плотности вещества.

вильгельм рентген интересные факты

Свойства

Дальнейшие исследования дали весьма любопытные результаты. Во-первых, выяснилось, что свинец полностью поглощает это излучение. Во-вторых, поместив между трубкой и экраном свою руку, ученый получил изображение костей внутри нее. А в-третьих, лучи засвечивали фотопленку, так что результаты каждого исследования вполне можно было задокументировать, чем и занимался Вильгельм Рентген, открытия которого еще нуждались в должном оформлении, прежде чем их можно было представить публике.

Спустя три года после первых опытов немецкий физик опубликовал в научном журнале статью, к которой приложил изображение, наглядно демонстрирующее проникающую способность лучей, и описал уже изученные им свойства. Сразу после этого десятки ученых подтвердили это, проведя опыты самостоятельно. Кроме того, некоторые исследователи заявили, что сталкивались с этим излучением, но не придавали ему значения. Теперь они кусали локти и ругали себя за невнимательность, завидуя, как им казалось, просто более удачливому коллеге по имени Вильгельм Рентген.

Интересные факты об открытии

Сразу после выхода статьи появилось огромное количество ловких дельцов, утверждавших, что с помощью икс-излучения можно заглянуть в человеческую душу. Более приземленные рекламировали приборы, якобы позволяющие видеть сквозь одежду. Например, в США Эдисону заказали разработку театральных биноклей с использованием излучения. И хотя идея провалилась, это вызвало немалый переполох. А коммерсанты, торговавшие одеждой, рекламировали свои изделия, утверждая, что их товар не пропускает лучи, и женщины могут чувствовать себя в безопасности, чем существенно повышали продажи. Все это страшно докучало ученому, который просто хотел продолжать свои научные изыскания.

где и когда родился вильгельм рентген

Применение

Когда Вильгельм Рентген открыл рентгеновские лучи и показал, на что они способны, это буквально взорвало общество. До этого момента заглянуть внутрь живого человека, увидеть его ткани, не разрезая и не повреждая их, было невозможно. А рентгеновское излучение показало, как выглядит человеческий скелет в комплексе с остальными системами. Медицина стала первой и основной обастью, где были применены открытые лучи. С их помощью врачам стало гораздо проще диагностировать любые проблемы опорно-двигательного аппарата, а также оценивать тяжесть травм. Позднее икс-излучение стали применять и для лечения некоторых заболеваний.

Кроме того, эти лучи применяются для выявления дефектов в металлических изделиях, а еще с их помощью может быть выявлен химический состав тех или иных материалов. В искусствоведении также используются икс-лучи, с помощью которых можно посмотреть, что скрывается под верхними слоями краски.

немецкий физик

Признание

Открытие вызвало настоящий ажиотаж, который был совершенно не понятен ученому. Вместо продолжения исследований Рентген Вильгельм был вынужден рассматривать и отклонять бесконечные предложения немецких и американских коммерсантов, предлагавших ему сконструировать различные приборы на основе икс-излучения. Журналисты тоже не давали ученому работать, постоянно назначая встречи и интервью, и каждый из них задавал вопрос о том, почему Рентген не хочет получить патент на свое открытие. Каждому из них он отвечал, что считает лучи достоянием всего человечества и не чувствует себя вправе ограничивать его использование в благих целях.

Награды

Вильгельму Рентгену были свойственны природная скромность и отсутствие стремления к славе. Он отказался от дворянского титула, на который получил право после награждения орденом. А в 1901 году стал первым лауреатом Нобелевской премии по физике. Несмотря на то что это было высшим уровнем признания, исследователь не приехал на церемонию, хотя награду принял. Позднее эти деньги он передал правительству. В 1918 году ему также была вручена медаль Гельмгольца.

Наследие и память

Все из той же скромности Рентген Вильгельм назвал свое открытие крайне просто — икс-излучение. Это название прижилось, однако ученик исследователя, российский физик Абрам Иоффе, со временем ввел понятие, увековечившее фамилию ученого. Термин «рентгеновские лучи» в иностранной речи используется сравнительно редко, но все же встречается.

В 1964 году его именем был назван один из кратеров на обратной стороне луны. В его честь также названа одна из единиц измерения ионизирующего излечения. Во многих городах есть улицы, названные его фамилией, а также памятники. Существует даже целый музей, располагающийся в доме, где в детстве жил Рентген. Биография этого человека, возможно, не изобилует интересными подробностями, но прекрасно иллюстрирует, что достичь высоких результатов можно за счет усердия и упорства, а также внимательности.

Вильгельм Рентген. Рентгеновское излучение.: 52vadim — LiveJournal


Вильгельм Конрад Рентген
(Wilhelm Conrad Röntgen)

Будущий ученый родился 17 марта 1845 года в городе Леннепе, на месте нынешнего Ремшайда, в Германии. Его отец был фабрикантом и занимался продажей одежды, мечтая однажды передать свое дело по наследству Вильгельму. Мать была родом из Нидерландов. Спустя три года после рождения единственного сына семья переехала в Амстердам, где будущий изобретатель начал обучение. Его первым образовательным учреждением стало частное заведение под руководством Мартинуса фон Дорна.
Отец будущего ученого считал, что фабриканту необходимо инженерное образование, а сын был совершенно не против — его интересовала наука. В 1861 году Вильгельм Конрад Рентген перешел в Утрехтскую техническую школу, из которой вскоре был отчислен, отказавшись выдать товарища, нарисовавшего карикатуру на одного из преподавателей, когда началось внутреннее расследование. Вылетев из школы, Рентген Вильгельм не получил никаких документов об образовании, так что поступление в высшее учебное заведение для него теперь представляло непростую задачу — он мог претендовать только на статус вольнослушателя. В 1865 году, именно с такими исходными данными, он и попытался стать студентом Утрехтского университета, однако потерпел поражение.

На протяжении всех лет, проведенных в его стенах, Вильгельм Конрад Рентген был особенно увлечен физикой. Постепенно он начинает проводить и свои исследования. В 1869 году он заканчивает обучение, получив диплом инженера-механика и степень доктора философии. В конце концов, решив сделать свое увлечение любимой работой, он переходит в университет и защищает диссертацию, после чего приступает к работе ассистента и начинает читать лекции студентам. Позднее он несколько раз переходит из одного учебного заведения в другое, а в 1894 году становится ректором в Вюрцбурге. Спустя 6 лет Рентген переезжает в Мюнхен, где и работает уже до завершения карьеры.


Снимок руки Альберта фон Кёлликера, сделанный Рентгеном 23 января 1896 года

Рентгеновское излучение было открыто Вильгельмом Конрадом Рентгеном. Изучая экспериментально катодные лучи, 8 ноября 1895 года он заметил, что находившийся вблизи катодно-лучевой трубки картон, покрытый платиносинеродистым барием, начинает светиться в тёмной комнате. В течение нескольких следующих недель он изучил все основные свойства вновь открытого излучения, названного им X-лучами («икс-лучами»). 22 декабря 1895 года Рентген сделал первое публичное сообщение о своём открытии в Физическом институте Вюрцбургского университета. 28 декабря 1895 года в журнале Вюрцбургского физико-медицинского общества была опубликована статья Рентгена под названием «О новом типе лучей».

Но ещё за 8 лет до этого — в 1887 году Никола Тесла в дневниковых записях зафиксировал результаты исследования рентгеновских лучей и испускаемое ими тормозное излучение, однако ни Тесла, ни его окружение не придали серьёзное значение этим наблюдениям. Кроме этого, уже тогда Тесла предположил опасность длительного воздействия рентгеновских лучей на человеческий организм.


Трубка Крукса.

Катодно-лучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов.

По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи независимо — при наблюдении флюоресценции, возникающей при работе катодно-лучевой трубки. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них три статьи, в которых было исчерпывающее описание новых лучей. Впоследствии сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: «Я уже всё написал, не тратьте зря время».


Схематическое изображение рентгеновской трубки. X — рентгеновские лучи, K — катод, А — анод (иногда называемый антикатодом), С — теплоотвод, Uh — напряжение накала катода, Ua — ускоряющее напряжение, Win — впуск водяного охлаждения, Wout — выпуск водяного охлаждения

Свой вклад в известность Рентгена внесла также знаменитая фотография руки Альберта фон Кёлликера, которую он опубликовал в своей статье. За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В других странах используется предпочитаемое Рентгеном название — X-лучи, хотя словосочетания, аналогичные русскому, (англ. Roentgen rays и т. п.) также употребляются. В России лучи стали называть «рентгеновскими» по инициативе ученика В. К. Рентгена — Абрама Фёдоровича Иоффе.
В 1872 году Рентген вступил в брак с Анной Бертой Людвиг, дочерью владельца пансиона, которую он встретил в Цюрихе, когда учился в Федеральном технологическом институте. Не имея собственных детей, супруги в 1881 году удочерили шестилетнюю Жозефину Берту Людвиг, дочь брата Анны Ханса Людвига. Жена умерла в 1919 году, на тот момент учёному было 74 года. После окончания Первой мировой войны учёный оказался в полном одиночестве.

Рентген был честным и очень скромным человеком. Когда принц-регент Баварии за достижения в науке наградил учёного высоким орденом, дававшим право на дворянский титул и соответственно на прибавление к фамилии частицы «фон», Рентген не счёл для себя возможным претендовать на дворянское звание. Нобелевскую же премию по физике, которую ему, первому из физиков, присудили в 1901 году, учёный принял, но отказался приехать на церемонию вручения, сославшись на занятость. Премию ему переслали почтой. Когда правительство Германии во время Первой мировой войны обратилось к населению с просьбой помочь государству деньгами и ценностями, Вильгельм Рентген отдал все свои сбережения, включая Нобелевскую премию.

Памятник Вильгельму Конраду Рентгену в Санкт-Петербурге

Один из первых памятников Вильгельму Рентгену был установлен 29 января 1920 года в Петрограде (временный бюст из цемента, постоянный из бронзы был открыт 17 февраля 1928 года), перед зданием Центрального научно-исследовательского рентгено-радиологического института (в настоящее время институт является кафедрой рентгенологии Санкт-Петербургского государственного медицинского университета им. академика И. П. Павлова).

В 1923 году, после смерти Вильгельма Рентгена, его именем была названа улица в Петрограде.

В честь учёного названа внесистемная единица экспозиционной дозы фотонного ионизирующего излучения рентген (1928 г.) и искусственный химический элемент рентгений с порядковым номером 111 (2004 г.).

В 1964 Международный астрономический союз присвоил имя Вильгельма Рентгена кратеру на обратной стороне Луны.

На многих языках мира (в частности, на русском, немецком, голландском, финском, датском, венгерском, сербском…) излучение, открытое Рентгеном, называется рентгеновским или просто рентгеном. Научные дисциплины и методы, связанные с использованием этого излучения, также производятся от имени Рентгена: рентгенология, рентгеновская астрономия, рентгенография, рентген-дифракционный анализ и т. д.

https://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%BD%D1%82%D0%B3%D0%B5%D0%BD,_%D0%92%D0%B8%D0%BB%D1%8C%D0%B3%D0%B5%D0%BB%D1%8C%D0%BC_%D0%9A%D0%BE%D0%BD%D1%80%D0%B0%D0%B4
http://fb.ru/article/228519/rentgen-vilgelm-biografiya-otkryitiya-interesnyie-faktyi-iz-jizni#image1103340
https://ru.wikipedia.org/wiki/%D0%A0%D0%B5%D0%BD%D1%82%D0%B3%D0%B5%D0%BD%D0%BE%D0%B2%D1%81%D0%BA%D0%BE%D0%B5_%D0%B8%D0%B7%D0%BB%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5

биография и его величайшее открытие :: SYL.ru

Вильгельм Рентген, краткая биография которого будет представлена далее, стал известен всему миру благодаря своей научной деятельности. Родился ученый в 1845 г., 27 марта, под Дюссельдорфом. В течение всей жизни он преподавал и занимался исследованиями.

рентген вильгельм

Вильгельм Конрад Рентген: биография

Великий ученый был единственным ребенком в семье. Его отец был купцом и производил одежду. Мать была уроженкой Амстердама. В 1848 г. семья переехала в Нидерланды. Свое первое образование Рентген Вильгельм получил в школе Мартинуса ф. Дорна. В 1861 г. начал обучение в Утрехтской Технической школе. Однако спустя 2 года был отчислен из-за отказа выдать студента, нарисовавшего карикатуру на преподавателя. В 1865 Вильгельм попытался поступить в Утрехтский университет. По правилам, однако, его не могли зачислить. После этого Вильгельм сдал экзамены в Цюрихский политехнический институт. Здесь он поступил на отделение механической инженерии. В 1869 Рентген, получив степень доктора философии, выпускается из учебного заведения. Наука стала единственным делом, которым хотел заниматься Вильгельм Рентген. Биография ученого является примером того, насколько упорным может быть человек, стремящийся достичь поставленных целей.

Преподавательская деятельность

Успешно защитив диссертацию, Рентген Вильгельм становится ассистентом университета в Цюрихе, а впоследствии в Гиссене. С 1871 по 1873 г. он работает в Вюрцбурге. Спустя время вместе с Августом Адольфом (его профессором) переходит в Страсбургский университет. Здесь Рентген работал в течение пяти лет лектором. В 1876 г. он стал профессором. В 1879 г. его назначают на кафедру физики в Гиссенском университете. Впоследствии он стал её руководителем. В 1888 г. Вильгельм возглавил кафедру университета Вюрцбурга. В 1894 г. он стал ректором. Последним местом работы была кафедра физики Мюнхенского университета. Достигнув возраста, предусмотренного в правилах, он передал руководство В. Вину. Однако продолжал работу на кафедре до конца жизни. Скончался великий физик Вильгельм Рентген в 1923 г., 10 февраля, от рака. Его похоронили в Гиссене.

вильгельм конрад рентген

Вильгельм Рентген и его открытие

В начале 1896 г. над Америкой и Европой пронеслись сообщения о сенсационной работе профессора университета Вюрцбурга. Практически во всех газетах появился снимок руки, который, как позже выяснилось, принадлежал супруге ученого Берте Рентген. Вильгельм тем временем заперся в лаборатории и продолжал изучение обнаруженных лучей. Его работа дала толчок к новым исследованиям. Все ученые мира однозначно признают огромный вклад, который внес в науку Вильгельм Конрад Рентген. Открытие ученого обеспечило ему репутацию «тонкого классического экспериментатора».

Обнаружение феномена

После назначения на пост ректора Рентген Вильгельм принялся за экспериментальные исследования электрического разряда в вакуумных стеклянных трубках. В начале ноября 1895 г. он работал в лаборатории и изучал катодные лучи. Ближе к полуночи, чувствуя усталость, Рентген собрался уже уходить. Оглядев помещение, он выключил свет и уже почти закрыл дверь, как вдруг увидел в темноте светящееся пятно. Это был свет от экрана из синеродистого бария. Ученый задался вопросом о том, как это получилось. Электрический свет не давал такого свечения, солнце уже давно село, катодная трубка была выключена, более того, прикрыта картонным черным чехлом. Ученый задумался. Он еще раз посмотрел на трубку. Оказалось, она была включена. Нащупав рубильник, он выключил ее. Свечение исчезло. Рентген включил рубильник. Свечение появилось. Так он установил, что излучение исходит от трубки. Непонятно было, каким образом оно стало видимым. Ведь трубка была накрыта. Обнаруженный феномен Рентген Вильгельм назвал Х-лучами. Оставив картонный чехол на трубке, он стал перемещаться по лаборатории. Оказалось, что 1.5-2 метра для обнаруженного излучения не преграда. Оно легко проникает через станиоль, стекло, книгу. Когда же рука исследователя оказалась на пути излучения, он увидел очертание костей своей кисти. Рентген бросился к шкафу с фотопластинками. Он хотел закрепить увиденное на снимке. В ходе дальнейших исследований Рентген обнаруживает, что излучение засвечивает пластинку, оно не расходится сферически, а имеет определенное направление. Только к утру ученый вернулся домой. Следующие 50 дней велась напряженная работа. Он мог бы сразу предать гласности свое открытие. Однако ученый считал, что большее впечатление произведет сообщение, содержащее сведения и о природе излучения. Поэтому он хотел сначала изучить свойства лучей.

вильгельм рентген биография

Обнародование эксперимента

В канун Нового года, в 1895 г., 28 декабря, Вильгельм Конрад Рентген известил своих коллег об обнаруженном им феномене. На 30 страницах он описал явление, напечатал текст в виде брошюры и разослал ведущим европейским ученым. В первом сообщении Вильгельм Конрад Рентген писал: «Флюоресценция видна при достаточном затемнении. Она не зависит от того, какой стороной подносить бумагу – с или без платино-синеродистого бария. Флюоресценция наблюдается на расстоянии 2 метров от трубки». Рентген предположил, что свечение вызывают Х-лучи. Они проходят через непроницаемые для обычного света материалы. В этой связи в первую очередь он изучал поглощательную способность веществ. Ученый установил, что все материалы проницаемы для Х-лучей, но с разной степенью. Они могли проходить сквозь книгу с тысячью страниц, еловые доски толщиной 2-3 см, 15-миллиметровую алюминиевую пластинку. Последняя существенно ослабляла свечение, но полностью его не уничтожала.

Сложности исследования

Рентгену не удавалось обнаружить отражения или преломления лучей. Но он установил, что, если отсутствует правильное отражение, все же разные материалы относительно свечения ведут себя аналогично мутным средам, реагирующим на свет. Ученый, таким образом, смог определить факт рассеяния лучей веществом. Но все попытки выявить интерференцию давали отрицательный результат. Аналогичным образом обстояло дело и с исследованием отклонения излучения магнитным полем. По полученным результатам ученый сделал вывод, что свечение не идентично катодному. Но при этом излучение возбуждается им в стеклянных стенках трубки.

вильгельм рентген краткая биография

Описание свойств

В рамках исследования один из ключевых вопросов, которые ставил Рентген, касался природы новых лучей. В ходе экспериментов он установил, что они не являются катодными. Учитывая их интенсивное химическое воздействие и свечение, ученый предположил, что это разновидность ультрафиолетового света. Но в таком случае возникают некоторые неясности. В частности, если Х-лучи относятся к ультрафиолетовому свету, то они должны обладать рядом свойств:

  1. Не поляризоваться.
  2. При переходе в воду, алюминий, сероуглерод, каменную соль, цинк, стекло и прочие материалы из воздуха не испытывать заметного преломления.
  3. Не иметь сколько-нибудь заметного отражения от этих тел.

Кроме этого, их поглощение не должно зависеть ни от каких свойств материала, кроме его плотности. Основываясь на результатах исследований, таким образом, нужно было принять, что эти УФ-лучи ведут себя несколько иначе, чем уже известные инфракрасные и ультрафиолетовые. Но ученый не мог этого сделать и продолжил поиск объяснения.

вильгельм рентген нобелевская премия

Второе сообщение

Оно было обнародовано в 1896 г. В нем Рентген описал исследования ионизирующего воздействия излучения и возбуждение его разными телами. Ученый констатировал, что не было ни одного твердого вещества, в котором не возникало бы этого свечения. В ходе исследований Рентген изменил конструкцию трубки. В качестве катода он использовал вогнутое алюминиевое зеркало. В центре его кривизны под углом 45 градусов к оси помещалась платиновая пластина. Она выступала как анод. Из него выходили Х-лучи. Для их интенсивности не столь уж важно, является ли участок возбуждения анодом или нет. В результате Рентген установил основные конструктивные черты новых трубок.

Общественная реакция

Открытие Рентгена вызвало резонанс не только в научной сфере. Его статьей заинтересовались в разных странах. В Вене Экспер сообщал об открытии лучей в «Новую свободную прессу», в Санкт-Петербурге опыты Рентгена были повторены на лекции по физике. Х-лучи быстро нашли свое применение на практике. Особенно востребованы они были в технических сферах и медицине.

 вильгельм рентген и его открытие

Личная жизнь ученого

В 1872 г. Рентген женился на Анне Берте Людвиг. Она была дочерью хозяина пансиона. Встретились будущие супруги в Цюрихе. Своих детей у пары не было. В 1881 г. супруги приняли в семью дочь брата Берты Жозефину. Жена Рентгена скончалась в 1919 г. После завершения Первой мировой ученый остался в полном одиночестве.

Награды

Рентген отличался скромностью и честностью. Подтверждением тому является его отказ от дворянского титула, пожалованного ему принцем-регентом Баварии за его достижения в научной деятельности. Однако Нобелевскую премию Рентген принял. Но приехать на церемонию вручения отказался, ссылаясь на занятость. Стоит сказать, что награда Рентгену стала первой в истории ее присуждения за достижения в области физики. Ему отправили ее почтой. Во время войны германское правительство обратилось к населению за финансовой помощью. Люди отдавали свои деньги и ценности. Не стал исключением и Вильгельм Рентген. Нобелевская премия была в числе его ценностей, отданных добровольно правительству.

Память

Одним из первых памятников Рентгену стал цементный бюст, установленный в конце января 1920 г. в Петрограде. Постоянный бронзовый монумент появился в 1928 г., 17 февраля. Памятник установлен перед Центральным НИИ рентгено-радиологического института, который в настоящее время является кафедрой рентгенологии при Санкт-Петербургском государственном медицинском университете им. ак. И. П. Павлова. После смерти ученого в 1923 г. его имя было присвоено улице Петрограда. В честь физика назван химический элемент, порядковый номер которого — 111. Его имя присвоено единице экспозиционной дозы ионизирующего фотонного излучения. В 1964 г. в честь ученого был назван кратер на обратной стороне спутника Земли. На многих языках, в частности немецком, русском, финском, датском, голландском, сербском, венгерском и пр., излучение, которое было открыто физиком, называется рентгеновским или просто рентгеном. Наименования научных методов и дисциплин, в которых оно используется, также являются производными от имени ученого. Например, существует рентгенология, рентгенография, рентгеновская астрономия и пр.

вильгельм конрад рентген биография

Заключение

Несомненно, Вильгельм Рентген внес огромный вклад в развитие физики как науки. Страсть к исследованиям сделала ученого известнейшим человеком своей эпохи. Его открытие спустя столько лет продолжает служить на благо человечества. Вся его активность, все силы были направлены на исследования, эксперименты, опыты. Благодаря его достижению медицина и технологические дисциплины шагнули далеко вперед.

Открытие рентгена: история изобретения рентгеновского излучения

Изобретение рентгеновского излучения позволило сделать гигантские шаги как в развитии медицины, так и в научном прогрессе вообще. Вряд ли кто-то видел в мальчике по имени Вильгельм Конрад Рентген неординарную личность и будущего большого ученого. Он родился в 1845 году в Германии, недалеко от Дюссельдорфа. История говорит, что учеба в школе не давалась ему легко. Его исключили из неё и он так и не получил аттестат зрелости.

Крупнейший немецкий физик-экспериментатор

Вильгельм Конрад Рентген

Однако это не остановило любознательного молодого человека. Рентген стал сам изучать те науки, которые были ему интересны. Он стал посещать лекции Утрехтского университета. Известный учёный-физик Август Кундт обратил внимание на старательного студента и предложил ему быть ассистентом. И вот уже спустя несколько лет, молодой Рентген становится профессором в Страсбурге. Ещё позже, в 1894 году, ему предложили место ректора Вюрцбургского университета. Параллельно с ректорской работой он занимается и научной.

Научная случайность

Эту находку называют случайностью. Однако это не так. Только талантливый учёный смог бы увидеть в этой случайности новое открытие.

В 1894 г. Рентген занимался экспериментальной работой, исследуя электрический разряд в стеклянных вакуумных трубках. В 1895 году 8 ноября он изучал свойства катодных лучей. Уже стемнело, он стал собираться домой, выключил свет. И увидел, что экран из синеродистого бария, за которым находилась катодная трубка, светится. Это было странно, ведь электрический свет не мог заставить его светиться, катодная трубка закрыта картонным чехлом, но, как оказалось, не выключена. Он выключил трубку – свечение исчезло.

Так было выяснено, что свечение экрана было вызвано определенным светом, исходящим от катодной трубки.

При этом ни картонный чехол, ни метровый слой воздуха между ними не явились преградой для излучения. Это явление не могло не заинтересовать ученого. Он стал проверять способность этого излучения проходить сквозь разные предметы и материалы. Одни пропускали их, другие нет. То есть, некоторые вещества отражали эти лучи, другие частично, а иные не отражали совсем. Он назвал эти лучи Х-лучами. После этого ещё около 50 дней учёный работал, исследуя эти лучи. Он доказал, что именно катодная трубка излучает подобные лучи.

Случайно или нет, он подставил под лучи свою руку и увидел изображение костных структур кисти. Оказалось, что мягкие ткани кисти хорошо пропускали свет нового излучения, а костные структуры, наоборот, как и металл, оказались совершенно непроницаемы для лучей.

Первый известный рентгенологический снимок, который вошёл в историю, стал снимок руки супруги ученого. 28 декабря 1895 г. он описал свое открытие. Рукопись «О новом виде лучей» заняла 30 страниц. Рентген отправил её нескольким ученым физикам в Европе. Представил свое открытие и на суд Вюрцбургского физико-медицинского общества. Его открытие сразу заинтересовало мир ученых. Физики назвали новые обнаруженные лучи рентгеновскими, в честь их открывателя.

Исследования излучения продолжались. В 1896 г. Рентген в своём втором сообщении подробно описывает разные свойства обнаруженных и описанных им ранее лучей, а также проведенные с ними опыты. Он написал об их ионизирующем воздействии, о возбуждении разными телами. Описал изменения, внесенные им в строение катодной трубки.

1901 году за открытие новых лучей ученый Вильгельм Рентген получил Нобелевскую премию, которую сразу передал своему университету. Рентген не оформил на себя патент на своё открытие, подарив его человечеству. Он прожил 78 лет. Большую часть своей жизни он трудился и сделал ещё немало для науки.

К сожалению, о вредном для организма человека воздействии рентгеновского излучения стало известно позже.

Оказалось, что физики, постоянно работавшие с этими лучами и не применявшие никакой защиты, обнаруживали у себя тяжелые лучевые ожоги и прочие проявления лучевой болезни. Понятие о величине безопасной дозы излучения для человека и защиты от него было определено позже.

Новые открытия с помощью рентгеновских лучей

Дальнейшие исследования лучей привели к новым научным достижениям. Одним из них стало открытие радиоактивности.

Симметричность в расположении дифракционных пятен

Дифракция рентгеновских лучей

Другими учёными были открыты новые свойства этих лучей. Чарльз Баркл в 1917 г. получил Нобелевскую премию за свой труд о возможности измерять рассеянные лучи, применяя лучи рентгена при разряжении наэлектризованных тел. В 1914 г. Лауэ получил её за исследование дифракции лучей. В 1915 г. ученые отец и сын Брэгги стали обладателями этой премии за точное определение межатомного расстояния в кристаллах с использованием рентгеновских лучей.

Применение рентгеновских лучей

Первоначально особенности этого излучения были востребованы только в медицине. Уже через год рентгенологические лучи получили широкое распространение в травматологии и ортопедии.

Благодаря этим лучам, можно выяснить особенности и дефекты внутреннего строения желудка и всего ЖКТ. Так, учёный Ридер из Германии, выяснил, что если дать выпить больному кашицу с непроницаемым для рентгеновских лучей барием, то, будучи хорошо видным на снимке, он покажет все изгибы заполненного им внутреннего просвета ЖКТ и его дефекты. Также можно определить время, за которое барий покидает разные отделы ЖКТ, и судить, таким образом, о скорости его перистальтики.

Лучевая терапия широко применяется сегодня как метод лечения онкологических патологий.

Сканирование багажа на рентген-установке

Сферы применения рентгеновских лучей разнообразны

Позже рентгеновские лучи нашли своё применение и в других областях. Свойства рентгеновского света помогают установить подлинность картин, драгоценных камней, определять на таможне запрещённые к провозу предметы, не открывая чемоданов. Кроме того, оказалось, что благодаря свойствам рентгеновского света, лучи помогают заглянуть глубоко внутрь кристаллов, определять их особенности.
История развития и использования рентгеновских лучей не остановилась и на этом. Позже, возникла наука рентгеноастрономия. Оказалось, что процессы, происходящие на новых звёздах, тоже формируют интенсивные рентгеновские лучи. Изучая разные особенности излучения, ученые судят о происходящих на звёздах процессах.

История открытия рентгеновского излучения — Vetstudy

RoentgenВильгельм Конрад Рентген.

Наука рентгенология получила своё название в честь профессора Вюрцбургского университета Вильгельма Конрада Рентгена, открывшего рентгеновское излучение 8 ноября 1895 г. Само открытие Рентген совершил неожиданно для себя: поздним вечером, уходя из лаборатории, учёный погасил свет в комнате и заметил в темноте зеленоватое свечение, флюоресценцию, исходившую от экрана, покрытого кристаллами платино-синеродистого бария. Как оказалось, кристаллы отреагировали на воздействие на них расположенной неподалёку электровакуумной (круксовой) трубки, которая в тот момент находилась под высоким напряжением. При отключении тока свечение экрана прекращалось, а при повторном включении снова возобновлялось. Трубка была обёрнута в чёрную светонепроницаемую бумагу, поэтому Рентген предположил, что при прохождении через неё электрического тока она испускает какие-то невидимые лучи, способные проникать через непрозрачные среды и возбуждать кристаллы бария. Эти неизвестные лучи Рентген назвал X-лучами.

Через 50 дней учёный представил председателю Вюрцбургского физико-медицинского общества рукопись из 17 страниц, содержащую описание открытых им лучей. Этот день, 28 декабря 1895 г., вошёл в историю как официальная дата открытия рентгеновских лучей. Вместе с рукописью учёный представил также первую рентгенограмму, сделанную ранее, 22 декабря, на которой была запечатлена рука его жены Берты Рентген. После того как женщина увидела рентгеновский снимок своей руки, она, не разбираясь в тонкостях физики, была настолько впечатлена, что воскликнула: «Я видела свою смерть».

Вечером 23 января доктор Рентген прочитал лекцию в наполненной аудитории Вюрцбургского физико-медицинского общества. После дискуссии о проведённых экспериментах Рентген пригласил председателя общества Альберта фон Кёлликера, известного анатома, сделать снимок его руки с помощью новых X-лучей. Когда готовое изображение было продемострировано аудитории, она разразилась оглушительными овациями. Доктор фон Кёлликер, впечатлённый открытием, предложил назвать новые лучи рентгеновскими — его предложение аудитория встретила аплодисментами.

Открытие рентгеновских лучей вызвало широкий резонанс среди учёных всего мира, в том числе и среди российских учёных. В начале января 1896 г. брошюра Рентгена была опубликована. В течение нескольких недель она была переведена на русский, английский, французский и итальянский языки, и уже в конце января А. С. Попов изготовил первый в нашей стране рентгеновский аппарат, с помощью которого русские учёные повторили эксперимент Рентгена, сделав в России первую рентгенограмму. Фотография полученного снимка была размещена в русском переводе брошюры Рентгена, опубликованном в этом же месяце в Петербурге под названием «Новый род лучей».

Вильгельм Рентген продолжал изучать своё открытие, и к маю 1897 г. он окончательно сформулировал все основные свойства X-лучей, опубликовав ещё две научных статьи. Наиболее ценным практическим свойством рентгеновского излучения, нашедшем широкое применение в науке и медицине, оказалась его способность проникать через непрозрачные тела. В 1901 г. Вильгельм Рентген был удостоен за своё открытие первой Нобелевской премии в области физики. Впоследствии науку, изучающую воздействие рентгеновских лучей на организм, назвали рентгенологией.

First-x-rayПервый рентгеновский снимок, на котором запечатлена рука жены учёного, Берты Рентген, и её обручальное кольцо.

Годом рождения ветеринарной рентгенологии в России можно считать 1896 г., когда С.С. Лисовский впервые применил рентгеновские лучи для просвечивания собаки. В 1899 г. М.А. Мальцев помимо просвечивания произвёл также снимки головы, шеи и конечностей собаки, плюсны и пута лошади, а также пясти коровы; для фиксации животных во время исследования учёный применял наркоз. Спустя три года в лаборатории Харьковского ветеринарного института была собрана рентгеновская установка, с помощью которой диагностировали переломы костей и вывихи, определяли инородные тела, а также проводили исследования плодов у мелких домашних животных.

Однако эти исследования были единичными, они проводились на примитивных аппаратах, собранных своими силами. Лишь к 1924 г. в мастерских бывшего СССР было начато производство рентгеновских аппаратов, и благодаря Г.В. Домрачёву и А.И. Вишнякову из Казанского и Ленинградского ветеринарных институтов данный вид исследования получил широкое применение в ветеринарии.

Впоследствии мастерские по производству рентгеновских аппаратов превратились в рентгеновские заводы, которые к 1931 г. стали выпускать аппараты, пригодные для исследования не только мелких животных, но и крупных, благодаря чему в 1932 г. в Ленинградском, Харьковском и Казанском ветеринарных институтах, были оборудованы первые рентгеновские кабинеты.

First-x-rayРентгенограмма руки анатома Альберта фон Кёлликера, сделанная 23 января 1896 г. В.К. Рентгеном во время его публичной лекции на заседании физико-медицинского общества.

С этого момента в бывшем СССР начинается интенсивное развитие ветеринарной рентгенологии, существенный вклад в которую внесли многие советские ветеринарные рентгенологи. Среди наиболее значимых открытий можно выделить следующие:

  • В 1931 г. А. И. Вишняковым была написана первая книга по рентгенодиагностике болезней животных «Основы ветеринарной рентгенологии»
  • В 1935 г. выходит книга проф. А. В. Синева «Клиническая диагностика внутренних болезней домашних животных»
  • В 1939 г. появляется книга А. Ю. Тарасевича «Хромоты сельскохозяйственных животных»
  • В 1940 г. издаётся объёмный учебник А. И. Вишнякова «Ветеринарная рентгенология», в котором описываются принципы рентгенофизики, рентгенотехники, а также приводится обширный и систематизированный материал по рентгенодиагностике различных заболеваний животных и рентгенотерапии
  • А.А. Веллером опубликованы статьи по использованию рентгеновского исследования в армейских условиях. Веллер также изучал возможности диагностики заболеваний конечностей, холки и кишечника у лошадей
  • Г. Г. Воккен опубликовал целый ряд работ по возрастной и сравнительной рентгеноанатомии животных, рентгеноостеологии, антропологии и ангиологии

Ветеринарные рентгенологи России и бывшего СССР внесли большой вклад в ветеринарную науку по таким вопросам, как определение минерального обмена у сельскохозяйственных животных и птиц, диагностика болезней органов дыхания крупных и мелких животных, диагностика болезней органов пищеварения, сравнительные рентгеноанатомические исследования у сельскохозяйственных животных, определение места и глубины залегания инородных тел.

В связи с появлением в настоящее время ещё более совершенных рентгеновских аппаратов возможности исследования животных значительно увеличились. Активно развивается цифровая рентгенография, которая благодаря многократному улучшению качества изображения постепенно вытесняет классическую, аналоговую рентгенографию.

Функция печати недоступна из системного меню вашего браузера. Для того чтобы распечатать эту страницу, нажмите на ссылку «Версия для печати» в заголовке статьи.

Охраняется законом РФ «Об авторском праве».
Размещение материалов на сторонних ресурсах возможно только с разрешения редакции портала.

КТ, МРТ, УЗИ, рентген: какие бывают исследования и зачем они нужны | Здоровая жизнь | Здоровье

Регулярно хожу к стоматологу, где постоянно делают рентген полости рта. А у гинеколога без УЗИ не обходится… Насколько опасны эти исследования и для чего нужны?

И. Крысова, Ижевск

Рентген

С одной стороны человека находится источник рентгенов­ского излучения, с другой — фотоплёнка, которая отображает, как лучи проходят через разные ткани и органы.

Когда используется. Для определения переломов костей, заболевания лёгких, в стоматологии и неврологии. Рентген-аппараты используют во время операций на сердце, чтобы в реальном времени контролировать процесс.

Маммография

В её основе — тоже рентген.

Когда используется. Для исследования молочной железы. Есть маммо­графы для скрининга — профилактических осмотров. А диагностические маммографы используют, если уже есть подозрение на рак груди. Такой аппарат может сразу взять образец опухоли, чтобы определить её злокачественность — сделать биопсию. Современные аппараты, имеющие характеристику microdose (микродоза), в 2 раза сокращают уровень облучения.

КТ

Это тоже вид рентгена, но снимки тела делаются с разных ракурсов. Компьютер выдаёт трёхмерные  изображения части тела или внутреннего органа. Подробное изображение всего тела можно получить за одну процедуру. Современный спектральный томограф самостоятельно определит типы тканей, покажет их разными цветами.

Когда используется. При травмах — чтобы комплексно оценить степень повреждений. В онкологии — чтобы найти опухоли и метастазы.

УЗИ

Ультразвуковые волны отражаются по-разному мышцами, суставами, сосудами. Компьютер преобразует сигнал в двухмерное или трёхмерное изображение.

Когда используется. Для постановки диагноза в кардиологии, онкологии, акушерстве и гинекологии. Аппарат показывает внутренние органы в реальном времени. Это самый безопасный метод.

Смотрите: Насколько вредны для здоровья рентген и УЗИ →

МРТ

Создаёт электромагнитное поле, улавливает насыщенность тканей водородом и передаёт эти данные на экран. В отличие от КТ у МРТ нет излучения, но он также делает объёмные картинки в 3D. МРТ хорошо визуализирует мягкие ткани.

Когда используется. Если нужно обследовать головной мозг, позвоночник, брюшную полость, суставы (в том числе под контролем МРТ проводят операции, чтобы не задеть важные участки мозга — например, отвечающие за речь).

Мнения экспертов

Илья Гипп, к. м. н., руководитель направления терапии под контролем МРТ:

— Многие из этих аппаратов могут применяться для лечения. Например, к МРТ-аппарату присоединяется специальная установка. Она фокусирует волны ультразвука внутри тела, точечно повышая температуру, и выжигает новообразования — например, миому матки.

Кирилл Шаляев, директор направления крупнейшего голландского производителя медицинской техники:

— То, что вчера казалось невозможным, сегодня — реальность. Раньше при КТ вводили препарат, замедляющий работу сердца. Новейшие компьютерные томо­графы делают 4 оборота в секунду — благодаря этому замедлять работу сердца не нужно.

Какие дозы облучения мы получаем*
Действие Доза в мЗв** За какой промежуток времени получим это излучение в природе
Рентгеновский снимок руки 0,001 Менее 1 дня
Рентгеновский снимок руки на самом первом аппарате 1896 г. 1,5 5 месяцев
Флюорография 0,06 30 дней
Маммография 0,6 2 месяца
Маммография с характеристикой MicroDose 0,03 3 дня
КТ исследование всего тела 10 3 года
Год прожить в кирпичном или бетонном доме 0,08 40 дней
Годовая норма от всех природных источников излучения 2,4 1 год
Доза, полученная ликвидаторами последствий аварии на Чернобыльской АС 200 60 лет
Острая лучевая болезнь 1000 300 лет
Эпицентр ядерного взрыва, смерть на месте 50 000 15 тыс. лет
* По данным Philips
** Микрозиверт (мЗв) – единица измерения ионизирующего излучения. Один зиверт — это количество энергии, поглощённое килограммом биологической ткани.

 

Смотрите также:

10 изображений, которые потрясли медицинский мир

© Wikimedia

Для большинства из нас прохождение УЗИ, МРТ, ангиографии или рентгена означает нахождение в комнате без окон, больше похожей на темницу, чем на больничное помещение. Специалист одевает нас в особую одежду, а потом фиксирует наше тело в разных болезненных позах. В такие минуты мы почти готовы увидеть факелы на стенах, и «железную деву» в углу. Ниже представлены 10 изображений, которые сделают все вышеуказанные процедуры не такими страшными.

1. Обручальное кольцо Берты Рентген

В ноябре 1895-го года профессор физики Вильгельм Конрад Рентген из Вюрцбурга, Бавария, изучал «электрические лучи», когда обнаружил, что они могут проникать сквозь объекты и проецировать изображения этих объектов на флуоресцентный экран. Когда он поместил на пути лучей свою руку, то заметил, что изображение показало контраст между костью и полупрозрачной плотью. Рентген мгновенно понял последствия своего открытия: теперь врачи могли исследовать организм человека без вскрытия. Он заменил флуоресцентный экран на фотографическую пластину и 8 ноября 1895-го года сделал первый рентгеновский снимок. На снимке была левая рука его жены, Берты и её обручальное кольцо.

Вильгельм Конрад Рентген

Сначала мир сомневался насчёт открытия Рентгена. В «The New York Times» открытие отвергли, посчитав его простой фототехникой, известной уже давно. Но буквально через неделю в «The Times» начали появляться отчёты о том, насколько рентгеновские лучи оказались полезны для хирургов. Один из таких отчётов принадлежал британскому врачу по имени Джон Холл-Эдвардс, который был первым, кто использовал рентгеновские лучи для того, чтобы обнаружить иглу, попавшую в руку пациента. В 1901-м году Рентген получил Нобелевскую премию по физике, и в настоящее время его выводы считаются «одним из величайших открытий в истории науки».

2. Съёмка работы сердца и пищеварительной системы с помощью рентгеновских лучей

Джон Макинтайр

После открытия Рентгена ситуация начала развиваться очень быстро. Почти сразу же учёные объединили рентгеновские лучи с кинематографом и начали фиксировать движущиеся объекты. Первым в этом деле был Джон Макинтайр, хирург из Королевской больницы города Глазго. Макинтайр уже создал первое в мире рентгеновское отделение, и позже именно в его отделении впервые обнаружат камни в почках пациента.

А в 1897-м году Макинтайр представил Лондонскому королевскому обществу короткометражный фильм. Это был рентген лягушачьей лапки. Лапку Макинтайр взял потому, что для того, чтобы «просветить» её, требовалось гораздо меньше энергии, чем для «просвечивания» человеческой ноги. Позже он снял бьющееся человеческое сердце. Кроме того, он давал пациенту висмут и снимал его пищеварительную систему для того, чтобы увидеть, как происходит усвоение висмута.

Сегодня эти фильмы называются «рентгеноскопия». Они используются для того, чтобы снять размещение катетеров в сердце, снять работу пищеварительной и мочевыделительной систем и для других медицинских процедур. В 2013-м году в одной только Великобритании было проведено свыше 1,3 млн рентгеноскопических процедур.

3. Майор Бивор охотится за пулями

Через несколько месяцев после открытия рентгеновские лучи уже использовались на поле боя. Впервые их использовали во время абиссинской войны.

Когда Италия вторглась в Абиссинию в 1896-м году, подполковник Джузеппе Альваро использовал рентгеновский аппарат для того, чтобы искать пули в предплечьях итальянских солдат. А через год рентгеновские лучи вновь были использованы на поле боя, но на этот раз во время греко-турецкой войны. Несмотря на многочисленные успехи, военные не спешили признавать эффективность использования рентгена при лечении раненых.

В июне 1897-го года разразилась война между Афганистаном и Индией. Британия послала своих солдат на плато Тирах для того, чтобы освободить горные перевалы. Майор Уолтер Бивор приобрёл рентгеновское оборудование и установил его в полевом госпитале на Тирахе. Он сделал более 200 снимков, в том числе и снимок локтя индийского солдата с пулей, застрявшей там. Также Бивор смог обнаружить пулю, попавшую в ногу генерала Вудхауса. На следующий год Бивор выступил с докладом перед научным сообществом, и с того момента Британия стала постоянно использовать на поле боя рентгеновские аппараты. Другие страны постепенно начали следовать примеру англичан.

Мария Кюри

Одним из достоинств аппаратов была их портативность. Во время Первой мировой войны Мария Кюри и её дочь Ирен привезли на фронт 20 рентгеновских аппаратов в багажнике микроавтобуса. Сегодня мобильные аппараты используются при лечении пациентов, которые слишком больны чтобы самостоятельно прийти в радиологическое отделение больницы.

4. Доказательство ущерба, причиняемого металлическими корсетами

В одном из самых ранних известных видов медицинской визуализации французский врач Людовик О’Фолловэл, чтобы привлечь внимание к одной проблеме, сделал снимки торсов нескольких женщин вначале с металлическими корсетами, а затем без них. Снимки чётко показывают, как жёсткие металлические корсеты сдавливают грудную клетку, и находящиеся там внутренние органы. О’Фолловэл вовсе не был сторонником полного запрета корсетов. Он лишь хотел, чтобы их делали более гибкими. Именно это в дальнейшем и произошло. Снимки О’Фолловэла, подкреплённые мнениями других авторитетных врачей того времени, привели к тому, что промышленность начала выпускать более свободные корсеты.

Однако позже эксперты задались другим вопросом: имел ли право О’Фолловэл использовать рентген для того, чтобы доказать свою точку зрения? В те времена для того, чтобы сделать снимок, фиксируемый предмет подвергался действию лучей очень долго. Например, чтобы сделать в 1896-м году снимок предплечья, требовалось 45 минут. Чтобы сделать первый стоматологический рентгеновский снимок, потребовалось 25 минут. Женщины в корсетах подвергались действию лучей вдвое дольше, причём облучались наиболее чувствительные к радиации части тела: грудь и живот (а значит, и репродуктивные органы).

Опасность радиации в то время уже была хорошо известна. Уже в первый год испытаний лучей врачи регистрировали выпадение волос, покраснение и шелушение кожи. Кларенс Далли, работая с лучами для Томаса Эдисона, неоднократно подвергал свои руки воздействию радиации, и длилось это как минимум два года. Впоследствии обе руки были ампутированы, а сам Далли умер от рака в 1904-м году. Большинство пионеров в исследовании радиации (Мария и Ирэн Кюри, Джон Холл-Эдвардс, Вильгельм Рентген) умерли от заболеваний, вызванных радиацией.

Однако мир не спешил признавать огромную опасность избыточной радиации. Женщины облучали себе яичники для лечения депрессии. Излучение использовалось как средство от стригущего лишая, от прыщей, от импотенции, от артрита, от язвы и даже от рака. В косметических салонах клиентов облучали для того, чтобы на лице не росли волосы. Облучали зубную пасту, шоколад, воду. В 1920–1950-х годах во многих обувных магазинах стояли рентгеновские аппараты, делающие снимки ног клиентов в обуви, чтобы показать, насколько хорошо она сидит на ногах. В наши дни рентгеновские лучи почти никогда не используются для не-медицинских целей, однако и сегодня повышенная радиация представляет опасность. Одно исследование показало, что 18500 случаев рака во всём мире спровоцировано именно медицинским рентгеном.

5. Самый первый катетер

Вернер Форсман

Работая хирургом в клинике Виктории, Вернер Форсман выдвинул теорию о том, что гибкая трубка (катетер) может быть введена в пах или в руку пациента и по венам может быть доставлена непосредственно в сердечную пазуху.

Большинство экспертов в тот момент посчитало, что катетер не дойдёт до сердца таким способом, поэтому начальство в клинике Виктории отказалось давать разрешение на этот эксперимент врача. Но Форсмана это не испугало, и он вставил иглу себе в левую руку, а затем продвинул катетер по главной вене через бицепс, минуя плечо, непосредственно в сердце. Для этого потребовалось всего 60 см трубки. После этого Форсман спустился в рентгеновское отделение и сделал снимок, чтобы доказать, что катетер на самом деле дошёл до сердца. Позднее он выполнял эту процедуру на себе ещё несколько раз. К сожалению, коллеги Форсмана высмеяли его, посчитав процедуру обычным фокусом.

Обескураженный, Форсман продолжил работу, переквалифицировавшись из хирурга в уролога. Он не знал, что важность его вклада в медицину будет признана не сразу, так что был очень озадачен, когда в октябре 1956-го года у него дома зазвонил телефон, и ему сообщили, что он стал лауреатом Нобелевской премии в области медицины и физиологии. Докотор просто спросил: «За что»?

6. Гиперфонография

Одним из недостатков рентгеновской технологии является то, что она позволяет увидеть только образы плотных анатомических структур, таких, как кости или инородные тела (например, пули). Другим недостатком является то, что излучение опасно, и оно вполне может убить ребёнка в утробе матери. Так что медицинскому миру был необходим безопасный способ отображения менее плотных структур тела. Решение пришло после крушения «Титаника» в 1912-м году.

Реджинальд Фессенден

Чтобы лучше обнаруживать айсберги, Реджинальд Фессенден запатентовал устройство, испускающее направленные звуковые волны и фиксирующее их эхо, отражённое от различных удалённых объектов. Его сонар был способен обнаруживать айсберги на расстоянии в двух километров.

В то же самое время разразилась Первая мировая война, и немецкие подводные лодки начали угрожать транспортным судам союзников. Физик Поль Ланжевен разработал гидрофон, который также использовал звуковые волны для обнаружения немецких субмарин. 23 апреля 1916-го года была потоплена немецкая лодка US-3. Это была первая лодка, обнаруженная с помощью гидрофона. После войны технология гидрофона использовалась для обнаружения дефектов в металлах.

Карл Дуссик

В конце 1930-х годов немецкий невропатолог и психиатр Карл Дуссик считал, что с помощью звука можно заглянуть в мозг и посмотреть на другие части тела, которые не видны в рентгеновских лучах. Дуссик первым начал использовать звук в целях диагностики. Большую часть своей работы он проделал в Австрии. Позднее он расширил и дополнил свои исследования, и тогда мир впервые услышал слово «гиперфонография».

А через десять лет врач-акушер из Шотландии по имени Ян Дональд позаимствовал промышленный ультразвуковой аппарат и использовал его для изучения различных опухолей. Вскоре Дональд начал успешно использовать эту машину для обнаружения злокачественных опухолей и для контроля состояния плода в утробе матери.

7. Первая компьютерная томография

Одним из ограничений рентгеновских снимков является то, что на снимке появляется всё, что находится между рентгеновской трубкой и самим снимком. В итоге всякие патологии, такие как опухоли, могут быть скрыты тканями, органами и костями, находящимися выше или ниже.

В 1930-х годах начался расцвет томографии. Это был рентген определённых уровней тела, а всё, что находилось выше или ниже необходимой плоскости, на снимке выглядело размытым. Делалось это путём перемещения рентгеновской трубки в ходе съёмки. Трубка могла перемещаться в трёх плоскостях человеческого тела: саггитальной (слева направо), корональной (спереди назад), и осевой, она же плоскость поперечного сечения (от ног к голове).

Годфри Хаунсфилд

А в 1967-м году учёный из EMI по имени Годфри Хаунсфилд изобрёл осевой томограф. EMI также является звукозаписывающей компанией, которая продала 200 млн записей группы «The Beatles», так что она использовала свои средства для того, чтобы финансировать Хаунсфилда в течение четырёх лет. Именно столько ему потребовалось для того, чтобы создать прототип аппарата. В его сканере вместо плёнки использовались датчики, а пациент просто проезжал между трубок и сенсоров с заданной скоростью. После чего компьютер реконструировал анатомическое строение пациента. Сегодня это называется просто: компьютерная томография. 1 октября 1971-го года Хаунсфилд впервые использовал собственное изобретение для обнаружения опухоли в мозгу женщины.

8. Первая магнитно-резонансная томография

При магнитно-резонансной томографии машина создаёт статическое магнитное поле, которое выстраивает все протоны в теле пациента в одном направлении. Затем короткие всплески радиоволн смещают эти протоны, и как только радиоволны отключаются, компьютер измеряет время, которое потребовалось для того, чтобы перестроить протоны. После чего компьютер использует эти измерения для того, чтобы реконструировать образ тела пациента.

Реймонд Дамадьян

Может показаться, что машины для компьютерной томографии (КТ) и магнитно-резонансной томографии (МРТ) очень похожи, однако они разные. КТ использует потенциально опасную радиацию, тогда как МРТ этого не делает. Кроме того, МРТ показывает органы и мягкие ткани намного лучше, чем КТ. МРТ используется тогда, когда врач хочет видеть состояние спинного мозга, связок и сухожилий. С другой стороны, КТ даёт возможность лучше рассмотреть повреждения позвоночника и костей.

Первый МРТ-сканер тела придумал физик Реймонд Дамадьян в 1969-м году. В 1971-м году он впервые опубликовал свою теорию об этом устройстве в журнале Science Magazine. В марте 1972-го года Дамадьян запатентовал своё изобретение. А 3 июля 1977-го года было проведено первое МРТ-сканирование человека.

Снимок груди Ларри Минкоффа

Поскольку ни один из его сотрудников не хотел лезть в новый сканер, Дамадьян полез туда сам. Когда ничего не сработало, сотрудники предположили, что их начальник был слишком большим. Один из присутствующих аспирантов, Ларри Минкофф был стройнее и вызывался попробовать. На картинке выше вы видите снимок груди Минкоффа.

9. Лапароскопия

Хирурги на протяжении веков удаляли из животов людей самые разные вещи. И эти животы всегда были вскрыты. Это делало пациента очень восприимчивым к инфекциям, и для восстановления после операции требовалось длительное время.

Но в 1901-м году врач-гинеколог фон Отт из Петрограда представил лапароскопию — метод, при котором операция производится не через большое отверстие, а через одно или несколько маленьких отверстий или щелей. Хирург при этом смотрит прямо в живот или в грудь пациента с помощью устройства, которое с виду напоминает миниатюрный телескоп. Вместо того, чтобы использовать свои руки, хирурги используют щипцы, ножницы, зажимы и другие инструменты на очень длинных стержнях.

К сожалению, это также означает, что хирург, делающий подобные операции, должен порой принимать самые неожиданные позы, чтобы посмотреть туда, куда нужно. Один хирург однажды вспоминал, что ему пришлось лечь на бедро пациента для того, чтобы удалить его желчный пузырь. А через 2,5 часа такой операции врач был полностью измотан. Именно по этой причине лапароскопия имеет ограниченное применение.

10. Трёх- и четырёхмерное ультразвуковое исследование

В течение тридцати лет ультразвук был ограничен только двумя измерениями, в которых аппараты вначале посылали звуковые волны, а потом фиксировали эхо. Миллионы родителей героически пытались, но так и не смогли разобрать на чёрно-белых снимках, как же выглядит их ребёнок. С 1970-го года учёные работают над трёхмерным ультразвуковым исследованием (УЗИ) детей. Звуковые волны посылаются под разными углами и в разных направлениях, затем из полученного эха реконструируется образ ребёнка. Почти так же, как это делает томограф.

В 1984-м году Кадзунори Баба из Токийского института медицинской электроники стал первым человеком, которому удалось получить трёхмерное изображение младенца в утробе матери. Но качество изображения и количество времени, которое потребовалось для реконструкции образа (10 минут) сделало метод диагностически непригодным.

Олаф фон Рамм

В 1987-м году Олаф фон Рамм и Стивен Смит запатентовали первый скоростной метод трёхмерного УЗИ, который позволил повысить качество изображения, и сократить время его обработки. А потом начался настоящий бум ультразвука, особенно после добавления четырёхмерного УЗИ, при котором родители получают возможность разглядеть движения своего ребёнка.

Отправить ответ

avatar
  Подписаться  
Уведомление о