Мозг человека и его возможности: Возможности человеческого мозга — уникальные свойства, сверхспособности – Возможности мозга человека: как развить по максимуму
13 способов прокачать мозг, которыми пользуются ученые и сотрудники спецслужб

Ребята, мы вкладываем душу в AdMe.ru. Cпасибо за то,
что открываете эту
красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook
и ВКонтакте
XXI век стал началом эпохи, когда ученым удалось буквально пробраться внутрь мозга и развенчать мифы о том, как он работает. Например, размер и вес мозга не связаны с уровнем интеллекта. Одновременно начались испытания методик и наблюдения, обучающие нас тому, как «взламывать» программы, которым следует мозг, и как прокачивать нужные навыки с нуля в любом возрасте. Этими открытиями сегодня активно пользуются сотрудники спецслужб, спортсмены, космонавты, врачи и любители биохакинга.
AdMe.ru расскажет о популярных заблуждениях, связанных с нашим мозгом, и предложит несколько простых способов сделать его работу более эффективной.
Миф: Мозг никогда не устает
На самом деле: от умственной работы мозг не способен устать, но психологическое, эмоциональное и физическое состояние влияют на его концентрацию и активность. Недавние исследования показали, что мозг лучше всего работает там, где слышит шум волн, чувствует соленый свежий воздух, видит оттенки синего и ощущает теплый песок. Поэтому на побережье моря или океана мы быстро восстанавливаем силы.
- Что делать: посещайте соляные комнаты, чаще гуляйте в хвойном лесу, отдыхайте вблизи водоемов, а летом не стесняйтесь ходить босиком. Постарайтесь иногда выбираться на море.
Миф: Рисуя, математиком не станешь
На самом деле: рисуйте, когда никак не решается сложная задача или нужно сделать серьезный выбор. Это занятие активизирует оба полушария, и мозг быстрее находит верное решение. Интегрированные занятия показали, что дети скорее осваивают математику и быстрее запоминают информацию, если иллюстрируют новый материал или просто калякают на полях.
- Что делать: рисовать или раскрашивать в течение 10–20 минут. Лучше работать неактивной рукой. Например, если вы правша, используйте левую руку. Превратите это в ежедневное занятие: эффект станет заметен в течение первого месяца.
Миф: Качели — это развлечение для детей
На самом деле: в раннем возрасте раскачивания помогают в развитии отделов мозга, отвечающих за речь и обработку информации. Поперечное качание и раскручивания в любом возрасте укрепляют вестибулярный аппарат, развивая навык ориентации в пространстве. Проверено космонавтами.
- Что делать: качаться на качелях по 15–20 минут 2–3 раза в неделю и не упускать возможности прокатиться на карусели. Это избавит вас от морской болезни и неприятных ощущений, возникающих при чрезмерном употреблении алкоголя.
Миф: Экстрасенсорных способностей не существует
Неограниченные возможности головного мозга. Человеческий головной мозг, и его скрытые возможности
Человеческий мозг – самый загадочный орган, который делает людей такими, какие они есть. Он хранит множество нераскрытых секретов и еще больше тайн, а количество мифов, окружающих мозг, не поддается подсчету. Разгадать все возможности не удается даже самым именитым ученым современности, несмотря на то, что медицина и наука шагнули сегодня далеко вперед в своих изысканиях.
Однако сколько мифов, столько и невероятных свидетельств, подтвержденных наукой, существует в наши дни. Это дает возможность с уверенностью говорить о том, что способности мозга человека выходят далеко за грани изученного. Единственный подтвержденный наукой и исследованиями факт не вызывает споров и сомнений – человек использует лишь малую часть возможностей, которые заложены природой в мозге. Выводы говорят, примерно, о 5-10% от всех возможностей, на которые он способен.
Что же является тормозом, мешает мозгу работать в полную силу? Ряд ученых склоняется к мысли о том, что, природа, наделив человека невероятным даром — интеллектом, предусмотрела и своеобразные защитные механизмы, которые призваны оградить мозг от чрезмерной нагрузки. Ресурсы мозга способны на сегодняшний день вместить в себя информацию в ограниченном количестве, пусть и достаточно большом в понимании обычных людей. Установлено в ходе экспериментов и исследований, что способности человека позволяют в течение жизни запомнить информации, размеров в 10 млн. бит. Вместе с тем мозг и сам защищает себя – работает в так называемом «экономичном режиме», то есть тратить энергии столько, сколько необходимо для нормального и не больше.
Научные методы и исследования мозга человека: тренировка важнее всего
Ученые выделяют следующие структурные составляющие головного мозга:
- Полушария большого мозга
- Мозжечок
- Ствол мозга
- Кора, она покрывает полушария головного мозга
Мозг человека, ровно, как и его тело, нуждается в постоянной, пусть и не изнуряющей тренировке, начиная с самого раннего детства и до наступления глубокой старости. Ученые установили, что активный и светлый разум оказывает влияние даже на состояние здоровья. Именно поэтому человек в старости может чувствовать себя также бодро и весело, как и в молодом возрасте.
К великому сожалению, так устроено природой, что у большинства людей развитие интеллекта, замедляется или прекращается вовсе с момента окончания учебы в школе или ВУЗе. Это не является поводом к тому, чтобы сомневаться в умственных способностях людей старшего возраста, просто способности мозга человека после достижения ими определенного возраста замедляются в развитии. Между тем, полная остановка в развитии означает неизбежную деградацию, поэтому – то и необходима тренировка.
Недостаточная интеллектуальная активность или попросту нежелание , давая ему нагрузку, приводит к снижению уровня кровоснабжения коры, что в свою очередь пагубно влияет на общее состояние интеллекта, а также и памяти. Ухудшение памяти, как раз и является тем тревожным звоночком, который должен стать сигналом тревоги и началом серьезной работы над улучшением интеллектуальных способностей. Несмотря на критику компьютерных игр, и развлечений, сегодня именно им отведена роль своеобразного тренажера для мозга. Установлено, что у людей, которые играют в игры, мозг работает лучше, появляется возможность совершения нескольких дел одновременно, скорость реакции увеличивается, а память становится более крепкой. Также установлено, что зубрить для того, чтобы запомнить информацию не нужно, так как мозг все равно не сохранит ее надолго, если нет понимания предмета.
Факты о человеческом мозге
Достоверно известно о мозге следующее:
- Увеличение размеров мозга продолжается ровно столько, сколько его тренируют.
- Мощное развитие мозга наблюдается в возрасте от 2 до 11 лет.
- Уровень образования влияет на вероятность заболеваний, связанных с мозгом человека.
- Сигналы в нервной системе человека достигают скорости почти в 300 км/ч, однако к моменту наступления старости эта скорость постепенно снижается, показывая разницу в 15% от прежних показателей.
- Самый высокий показатель IQ в мире у японцев. Его средний показатель равен 111, тогда как у 10% населения этой страны он составляет 130.
Также фактом является и то, что человек никогда не сможет пощекотать себя сам. Дело в том, что настроен на восприятие внешних раздражителей, которые при этом не являются следствием деятельности самого человека по отношению к себе. Кроме того, как это ни покажется странным, но разглядывать фотографию намного сложнее для мозга, чем играть в шахма
Правда ли, что мозг задействуется нами только на 10%?

Миф о работе мозга
Это неправда! Утверждение о том, что человеческий мозг работает на 10% (5%, 3%), — это старый, абсолютно неверный и совершенно неубиваемый миф. Разберемся, откуда он взялся.
В середине прошлого века было совершенно непонятно, как мыслит человек (сейчас это тоже непонятно, но уже на другом уровне). Но кое-что было известно — например, что мозг состоит из нейронов и что нейроны могут генерировать электрические сигналы.
Некоторые ученые тогда считали, что если нейрон генерирует импульс, то он работает, а если не генерирует — значит, «ленится». И вот кому-то пришла в голову мысль проверить: какое количество нейронов в целом мозге «трудится», а какое — «бьет баклуши»?
Нейронов в мозге несколько миллиардов, и было бы чистым безумием измерять активность каждого из них — это заняло бы много лет. Поэтому вместо того, чтобы изучать все нейроны подряд, ученые исследовали только небольшую часть, определили среди них процент активных и предположили, что по всему мозгу этот процент одинаков (такое предположение называется экстраполяцией).
И оказалось, что «работает», то есть генерирует импульсы, только неприлично малый процент нейронов, а остальные — «молчат». Из этого был сделан немного прямолинейный вывод: молчащие нейроны — бездельники, а мозг работает только на малую часть своих возможностей.
Вывод этот был абсолютно неправильный, но поскольку в то время было принято «исправлять природу», например поворачивать реки вспять, орошать пустыни и осушать моря, то идея о том, что и работу мозга тоже можно улучшить, прижилась и начала свое победное шествие по газетным страницам и журнальным разворотам. Даже и сейчас что-то подобное иногда встречается в желтой прессе.
Как примерно работает мозг
А теперь попробуем разобраться, как же всё обстоит на самом деле.
Мозг человека — структура сложная, многоуровневая, высокоорганизованная. То, что написано ниже, — очень упрощенная картинка.
В мозге есть множество областей. Некоторые из них называются сенсорными — туда поступает информация о том, что мы ощущаем (ну, скажем, прикосновение к ладони). Другие области — моторные, они управляют нашими движениями. Третьи — когнитивные, именно благодаря им мы можем мыслить. Четвертые отвечают за наши эмоции. И так далее.
Почему же в мозге не включаются одновременно все нейроны? Да очень просто. Когда мы не ходим, то неактивны нейроны, запускающие процесс ходьбы. Когда молчим, «молчат» нейроны, управляющие речью. Когда ничего не слышим, не возбуждаются нейроны, отвечающие за слух. Когда не испытываем страх, не работают «нейроны страха». Иными словами, если нейроны в данный момент не нужны — они неактивны. И это прекрасно.
Потому что если бы это было не так… Представим на секунду, что мы можем возбудить одновременно ВСЕ наши нейроны (больше секунды такого издевательства наш организм просто не вынесет).
Мы сразу начнем страдать от галлюцинаций, потому что сенсорные нейроны заставят нас испытывать абсолютно все возможные ощущения. Одновременно моторные нейроны запустят все движения, на которые мы только способны. А когнитивные нейроны… Мышление — настолько сложная штука, что вряд ли на этой планете найдется хоть один человек, который сможет сказать, что случится, если одновременно возбудить все когнитивные нейроны. Но предположим для простоты, что тогда мы начнем думать одновременно все возможные мысли. И еще мы будем испытывать все возможные эмоции. И многое еще произойдет, о чём я не буду писать, потому что здесь просто не хватит места.
Посмотрим теперь со стороны на это существо, страдающее от галлюцинаций, дергающееся от конвульсий, одновременно чувствующее радость, ужас и ярость. Не очень-то оно похоже на создание, улучшившее свой мозг до стопроцентной эффективности!
Наоборот. Лишняя активность мозгу не на пользу, а только во вред. Когда мы едим, нам не нужно бегать, когда сидим у компьютера — не нужно петь, а если во время решения задачи по математике думать не только о ней, но и о птичках за окном, то вряд ли эта задача решится. Для того чтобы мыслить, мало ДУМАТЬ о чём-то, надо еще НЕ ДУМАТЬ обо всём остальном. Важно не только возбуждение «нужных» нейронов, но и торможение «ненужных». Необходим баланс между возбуждением и торможением. И нарушение этого баланса может привести к очень печальным последствиям.
Например, тяжелая болезнь эпилепсия, при которой человек страдает от судорожных припадков, возникает тогда, когда возбуждение в мозге «перевешивает» торможение. Из-за этого во время припадка активизируются даже те нейроны, которые в эту секунду должны молчать; они передают возбуждение на следующие нейроны, те — на следующие, и по мозгу идет сплошная волна возбуждения. Когда эта волна доходит до моторных нейронов, они посылают сигналы к мышцам, те сокращаются, и у человека начинаются судороги. Что больной при этом ощущает, сказать невозможно, поскольку на время припадка у человека пропадает память.
Как всё-таки заставить мозг работать эффективнее
Надеюсь, вы уже поняли, что пытаться заставить мозг работать лучше, возбуждая все нейроны подряд, — дело бесперспективное, да еще и опасное. Тем не менее можно «натренировать» мозг, чтобы он работал эффективнее. Это, конечно, тема для огромной книги (и даже не одной), а не маленькой статьи. Поэтому я расскажу только об одном способе. Начать придется издалека.
Когда рождается маленький ребенок, количество нейронов в его мозге даже больше, чем у взрослого. Но связей между этими нейронами еще почти нет, и поэтому новорожденный человечек еще не в состоянии правильно использовать свой мозг — например, он практически не умеет ни видеть, ни слышать. Нейроны его сетчатки, даже если они чувствуют свет, не образовали еще связей с другими нейронами, чтобы передать информацию дальше, в кору больших полушарий. То есть глаз видит свет, но мозг не в состоянии понять это. Постепенно необходимые связи образуются, и в конце концов ребенок учится различать вначале просто свет, потом — силуэты простых предметов, цвета и так далее. Чем больше разнообразных вещей ребенок видит, тем больше связей образуют его зрительные пути и тем лучше работает та часть его мозга, которая связана со зрением.
Но самое удивительное не это, а то, что такие связи могут образовываться почти исключительно в детстве. И поэтому если ребенок по какой-то причине не может ничего видеть в раннем возрасте (скажем, у него врожденная катаракта), то необходимые нейронные связи в его мозге уже никогда не образуются, и человек не научится видеть. Даже если во взрослом возрасте у этого человека прооперировать катаракту, он всё равно останется слепым. Проводились довольно жестокие опыты на котятах, которым в новорожденном состоянии зашивали глаза. Котята вырастали, так ни разу ничего и не увидев; после этого им уже во взрослом возрасте снимали швы. Глаза у них были здоровые, глаза видели свет — но животные оставались слепыми. Не научившись видеть в детстве, они уже не способны были сделать это во взрослом возрасте.
То есть существует какой-то критический период, в который образуются нейронные связи, необходимые для развития зрения, и если мозг не научится видеть в этот период, он уже не научится этому никогда. То же относится и к слуху, и, в меньшей степени, к другим человеческим способностям и умениям — обонянию, осязанию и вкусу, способности говорить и читать, играть на музыкальных инструментах, ориентироваться в природе и так далее. Яркий тому пример — «дети-маугли», которые потерялись в раннем детстве и были воспитаны дикими животными. Во взрослом возрасте они так и не могут освоить человеческую речь, поскольку не тренировали у себя в детстве это умение. Зато они способны ориентироваться в лесу так, как не сможет ни один человек, выросший в цивилизованных условиях.
И еще. Никогда не знаешь, в какой момент «выстрелит» какое-то умение, приобретенное в детстве. Например, человеку, который в детстве активно тренировал мелкую моторику рук, занимаясь рисованием, лепкой, рукоделием, будет легче стать хирургом, проводящим филигранные, точные операции, в которых нельзя допустить ни одного неправильного движения.
Иными словами, если что и может заставить мозг работать лучше, то это — тренировка, причем тренировка с самого детства. Чем больше мозг работает, тем лучше он работает, и наоборот — чем меньше его нагружать, тем хуже он будет функционировать. И чем мозг младше, тем он более «гибкий» и восприимчивый. Именно поэтому в школах учат маленьких детей, а не взрослых дяденек и тетенек. Именно поэтому дети гораздо быстрее взрослых умеют приспосабливаться к новым ситуациям (например, осваивают компьютерную грамоту или учат иностранные языки). Именно поэтому тренировать свой интеллект надо с самого детства. И если вы будете это делать, то ничто не помешает вам сделать великие открытия. Например, о том, как работает мозг.
Ответила: Вера Башмакова
Когнитивная нейробиология — Википедия
Материал из Википедии — свободной энциклопедии
Когнитивная нейробиология — наука, изучающая связь активности головного мозга и других сторон нервной системы с познавательными процессами и поведением. Особое внимание когнитивная нейробиология уделяет изучению нейронной основы мыслительных процессов. Когнитивная нейробиология является разделом как психологии, так и нейробиологии, пересекаясь с когнитивной психологией и нейропсихологией.
В когнитивной нейробиологии используются экспериментальные методы психофизики, когнитивной психологии, функциональной нейровизуализации, электрофизиологии, психогенетики. Важным направлением когнитивной нейробиологии является изучение людей, имеющих нарушения психической деятельности вследствие повреждений головного мозга.
Связь строения нейронов с когнитивными способностями подтверждается такими фактами, как увеличение количества и размеров синапсов в мозге крыс в результате их обучения, уменьшение эффективности передачи нервного импульса по синапсам, наблюдаемое у людей, страдающих болезнью Альцгеймера.
Одним из первых мыслителей, утверждавших, что мышление осуществляется в головном мозге, был Гиппократ. В девятнадцатом веке такие учёные, как Иоганн Петер Мюллер предпринимают попытки изучить функциональную структуру головного мозга в аспекте локализации мыслительных и поведенческих функций в отделах головного мозга.
Томография[править | править код]
Структура мозга изучается при помощи компьютерной томографии, магнитно-резонансной томографии, ангиографии. Компьютерная томография и ангиография имеют меньшее разрешение при отображении мозга, чем магнитно-резонансная томография.
Исследование активности зон мозга на основе анализа метаболизма позволяет осуществить позитронно-эмиссионная томография и функциональная магнитно-резонансная томография.
- Позитронно-эмиссионная томография сканирует повышенное потребление глюкозы в активных участках мозга. Интенсивность потребления вводимой радиоактивной формы глюкозы рассматривается как параметр более высокой активности клеток данного участка мозга.
- Функциональная магнитно-резонансная томография сканирует интенсивность потребления кислорода. Кислород фиксируется в результате приведения частиц атома кислорода в сильном магнитном поле в нестабильное состояние. Преимуществом данного вида томографии является большая временна́я точность по сравнению с позитронно-эмиссионной томографией — возможность фиксировать изменения длительность которых не превышает нескольких секунд.
Электроэнцефалограмма[править | править код]
Электроэнцефалограмма позволяет изучать процессы, происходящие в головном мозге у живого носителя, таким образом анализировать активность мозга как реакцию на те или иные стимулы в режиме реального времени. Преимуществом этого метода является возможность исследовать активность мозга заданную точным временем. Недостатком этого метода исследования мозговой активности является невозможность добиться точности пространственного разрешения — невозможность определить то, какие именно нейроны или группы нейронов или даже отделы мозга реагируют на данный стимул. Чтобы добиться точности пространственного разрешения электроэнцефелограмму сочетают с позитронно-эмиссионной томографией.
Отделы головного мозга и психическая деятельность[править | править код]
Передний мозг[править | править код]
- Кора больших полушарий играет важнейшую роль в психической деятельности. Кора головного мозга выполняет функцию обработки информации, полученной через органы чувств, осуществление мышления, другие когнитивные функции. Кора головного мозга функционально состоит из трех зон: сенсорная, моторная и ассоциативная зоны. Функция ассоциативной зоны — связывать между собой активность сенсорных и моторных зон. Ассоциативная зона, предполагается, получает и перерабатывает информацию из сенсорной зоны и инициирует целенаправленное осмысленное поведение. Центр Брока и область Вернике расположены в ассоциативных зонах коры. Ассоциативная зона лобных долей коры головного мозга, предполагается, ответственна за логическое мышление, суждения и умозаключения осуществляемые человеком.

- Искусственное стимулирование моторной области коры больших полушарий обуславливает движение соответствующей части тела. Контроль движения части тела осуществляется контралатерально соответствующей зоны моторной области коры больших полушарий, ответственной за движение этой части тела. Верхние части тела контролируются нижележащими частями моторной области коры больших полушарий.
- Теменная доля коры головного мозга — соматосенсорные функции. В постцентральной извилине заканчиваются афферентные пути поверхностной и глубокой чувствительности. Развитие моторных и чувствительных функций коры головного мозга определило большую площадь тех зон, которые соответствуют частям тела, наиболее значимым в поведении и получении информации из внешнего мира. Электростимулирование постцентральной извилины обуславливает чувство прикосновения в соответствующей части тела.
- Затылочная доля коры головного мозга — зрительная функция. Волокна, по которым поступает зрительная информация в кору головного мозга, направлены как контралатерально так и ипсилатерально.(Зрительный перекрест Optic Chiasm)
- Височная доля коры головного мозга — слуховая функция.
- Таламус направляет сигналы от органов чувств, за исключением обоняния, к определенным участкам коры головного мозга. Четыре основных ядра таламуса, соответствующие четырём видам получаемых органами чувств информации (зрительная, слуховая, тактильная, чувство равновесия и баланса), направляют информацию к определенным для её переработки участкам коры головного мозга.
- Гипоталамус, взаимодействуя с лимбической системой, регулирует базовые навыки поведения индивида, связанные с выживаемостью вида: борьба, питание, спасение бегством, поиск брачного партнера.
- Лимбическая система связана с памятью, обонянием, эмоциями и мотивацией. Неразвитость лимбической системы, например у животных, говорит о преобладающем инстинктивном регулировании поведения. Миндалевидное тело лимбической системы связано с реакциями агрессии и страха. Удаление или повреждение миндалевидного тела, как показывают опыты, приводит к неадаптивному отсутствию страха[1]. Повреждение миндалевидного тела приводит к повышенному сексуальному влечению[2]. Перегородка головного мозга связана с эмоциями страха и гнева.
- Гиппокамп играет важнейшую роль в процессах запоминания новой информации. Нарушение гиппокампа обуславливает невозможность запоминания новой информации, хотя информация, которая была усвоена прежде, остается в памяти, и человек может оперировать ей. Синдром Корсакова, связанный с нарушением функционирования памяти, предполагается, обусловлен дисфункцией гиппокампа. Ещё одной функцией гиппокампа является определение пространственного расположения вещей, определение их расположения друг относительно друга. Согласно одной из гипотез, гиппокамп формирует сенсорную карту для ориентации в окружающей среде[3].
- Базальные ядра выполняют моторные функции.
Средний мозг[править | править код]
Средний мозг осуществляет важные функции контроля движения глаз, координации.
- Ретикулярная активирующая система (ретикулярная формация), простирающаяся и на конечный мозг, — это система нейронов, играющая важную роль в процессах сознания. Ретикулярная формация ответственна за процессы пробуждения/засыпания, фильтрацию второстепенных стимулов, поступающих в головной мозг. Вместе с таламусом ретикулярная формация обеспечивает осознание индивидом собственного существования, отделенного от внешних стимулов.
- Центральное серое вещество мозга (периакведуктальное серое вещество в мозге), расположенное в стволе головного мозга и окружающее Сильвиев водопровод среднего мозга, связано с адаптивным поведением индивида.
Задний мозг[править | править код]
В продолговатом мозге нервы правой стороны организма соединяются с левым полушарием, а нервы левой стороны организма соединяются с правым полушарием. Некоторая часть информации передаваемая нервами является ипсилатеральной.
Нейромедиаторы и психическая деятельность[править | править код]
Нейромедиаторы ответственны за взаимодействие нейронов в нервной системе.
- Ацетилхолин — предполагается, что этот нейромедиатор участвует в процессах памяти, поскольку его высокие концентрации обнаружены в гиппокампе[4].
- Дофамин — связан с регулированием движения, внимания и обучения.
- Адреналин — влияет на чувство настороженности.
- Серотонин — связан с регулированием пробуждения, засыпания, настроения.
- ГАМК — влияет на механизмы обучения и запоминания[5].
Внимание[править | править код]
Теория интеграции признаков, объясняющая ранние процессы зрительного восприятия, связанного с вниманием, нашла нейробиологическую базу в исследованиях Дэвида Хубела (David Hubel) и Торстена Визела (Torsten Wiesel). Ученые обнаружили нейронную основу механизма поиска признаков. Нейроны коры головного мозга различным образом реагировали на зрительные стимулы, связанные с определенной пространственной ориентацией (вертикальной, горизонтальной, наклоненной под углом)[6]. Дальнейшие исследования, проведенные рядом ученых, показали, что различные этапы зрительного восприятия связаны с различной активностью нейронов коры головного мозга. Одна активность соответствует ранним этапам обработки зрительного стимула и стимульного признака, другая активность соответствует поздним этапам восприятия, характеризующимся фокальным вниманием, синтезом и интеграцией признаков[7].
- ↑ Adolphs R., Tranel D., Damasio H., Damasio A. Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. (англ.) // Nature. — 1994. — 15 December (vol. 372, no. 6507). — P. 669—672. — DOI:10.1038/372669a0. — PMID 7990957. [исправить]
- ↑ Steffanaci, L. Amygdala, primate. In R. A. Wilson & F. C. Keil (Eds.), The MIT encyclopedia of the cognitive sciences (pp. 15-17). Cambridge, MA: MIT Press, 1999
- ↑ O’Keefe, J. A., & Nadel, L. The hippocampus as a cognitive map. New York : Oxford University Press. 1978
- ↑ Squire, L. R. (1987). Memory and the brain. New York: Oxford University Press.
- ↑ Izquierdo I., Medina J. H. Correlation between the pharmacology of long-term potentiation and the pharmacology of memory. (англ.) // Neurobiology Of Learning And Memory. — 1995. — January (vol. 63, no. 1). — P. 19—32. — DOI:10.1006/nlme.1995.1002. — PMID 7663877. [исправить]
- ↑ Hubel D. H., Wiesel T. N. Brain mechanisms of vision. (англ.) // Scientific American. — 1979. — September (vol. 241, no. 3). — P. 150—162. — DOI:10.1038/scientificamerican0979-150. — PMID 91195. [исправить]
- ↑ Bachevalier J., Mishkin M. Visual recognition impairment follows ventromedial but not dorsolateral prefrontal lesions in monkeys. (англ.) // Behavioural Brain Research. — 1986. — June (vol. 20, no. 3). — P. 249—261. — DOI:10.1016/0166-4328(86)90225-1. — PMID 3741586. [исправить]
- Baars, B.J., Gage, N.M. (2010). «Cognition, Brain, and Consciousness: Introduction to Cognitive Neuroscience» (2nd ed.)
- Bear, M. F., Connors, B. W. & Paradiso M. A.(2007). «Neuroscience: Exploring the Brain» (3rd ed.). pp. 10–11. Lippincott Williams & Wilkins (англ.)русск., ISBN 0-7817-6003-8
- Churchland, P.S. & Sejnowski, T.J. (англ.)русск. (1992). The Computational Brain (англ.)русск., The MIT Press, ISBN 0-262-03188-4.
- Code, C. (1996). Classic Cases: Ancient & Modern Milestones in the Development of Neuropsychological Science. In: Code, C. et al. Classic Cases in Neuropsychology.
- Enersen, O. D. (2009). John Hughlings Jackson. In: Who Named It?.
- Gallistel, R. (2009). «Memory and the Computational Brain: Why Cognitive Science will Transform Neuroscience.» Wiley-Blackwell (англ.)русск. ISBN 978-1-4051-2287-0.
- Gazzaniga M. S., Ivry R. B. & Mangun G. R. (2002). Cognitive Neuroscience: The biology of the mind (2nd ed.). New York: W.W.Norton.
- Gazzaniga, M. S., The Cognitive Neurosciences III, (2004), The MIT Press, ISBN 0-262-07254-8
- Gazzaniga, M. S., Ed. (1999). Conversations in the Cognitive Neurosciences, The MIT Press, ISBN 0-262-57117-X.
- Sternberg, Eliezer J. Are You a Machine? The Brain, the Mind and What it Means to be Human. Amherst, NY: Prometheus Books.
- Ward, Jamie. The Student’s Guide to Cognitive Neuroscience (неопр.). — 3rd. — Psychology Press, 2015. — ISBN 978-1848722729.
ЧТО ЗНАЕТ НАУКА О МОЗГЕ
Несмотря на все достижения современной науки, человеческий мозг остается самым загадочным объектом. С помощью сложнейшей тонкой аппаратуры ученые Института мозга человека Российской АН смогли «проникнуть» в глубины мозга, не нарушая его работы, и выяснить, каким образом происходит запоминание информации, обработка речи, как формируются эмоции. Эти исследования помогают не только разобраться в том, как выполняет мозг свои важнейшие психические функции, но и разработать методы лечения тех людей, у которых они нарушены. Об этих и других работах Института мозга человека рассказывает его директор С. В. Медведев.Интересные результаты дает такой эксперимент. Испытуемому рассказывают одновременно две разные истории: в левое ухо одну, в правое — другую.
Исследования, проведенные в последние годы в Институте мозга человека Российской академии наук, позволили определить, какие области мозга отвечают за осмысление различных особенностей воспринимаемой человеком речи.
‹
›
Мозг против мозга — кто кого?
Проблема исследования мозга человека, соотношения мозга и психики — одна из самых захватывающих задач, которые когда-либо возникали в науке. Впервые поставлена цель познать нечто, равное по сложности самому инструменту познания. Ведь все, что до сих пор исследовалось — и атом, и галактика, и мозг животного — было проще, чем мозг человека. С философской точки зрения неизвестно, возможно ли в принципе решение этой задачи. Ведь, кроме приборов и методов, главным средством познания мозга остается опять-таки наш человеческий мозг. Обычно прибор, который изучает какое-то явление или объект, сложнее этого объекта, в этом же случае мы пытаемся действовать на равных — мозг против мозга.
Грандиозность задачи привлекала многие великие умы: о принципах работы мозга высказывались и Гиппократ, и Аристотель, и Декарт и многие другие.
В прошлом веке были обнаружены зоны мозга, отвечающие за речь, — по имени открывателей их называют области Брока и Вернике. Однако настоящее научное исследование мозга началось с работ нашего гениального соотечественника И. М. Сеченова. Далее — В. М. Бехтерев, И. П. Павлов… Здесь я остановлюсь в перечислении имен, так как выдающихся исследователей мозга в двадцатом веке много, и слишком велика опасность кого-нибудь пропустить (особенно из ныне здравствующих, не дай Бог). Были сделаны великие открытия, но возможности методик того времени для изучения человеческих функций весьма ограничены: психологические тесты, клинические наблюдения и начиная с тридцатых годов электроэнцефалограмма. Это все равно, что пытаться узнать, как работает телевизор, по гудению ламп и трансформаторов или по температуре футляра, либо попробовать понять роль составляющих его блоков, исходя из того, что произойдет с телевизором, если этот блок разбить.
Однако устройство мозга, его морфологию изучили уже довольно хорошо. А вот представления о функционировании отдельных нервных клеток были очень отрывочными. Таким образом, не хватало полноты знаний о кирпичиках, составляющих мозг, и необходимых инструментов для их исследования.
Два прорыва в исследованиях мозга человека
Реально первый прорыв в познании мозга человека был связан с применением метода долгосрочных и краткосрочных имплантированных электродов для диагностики и лечения больных. В то же время ученые начали понимать, как работает отдельный нейрон, как происходит передача информации от нейрона к нейрону и по нерву. В нашей стране первыми в условиях непосредственного контакта с мозгом человека стали работать академик Н. П. Бехтерева и ее сотрудники.
Так были получены данные о жизни отдельных зон мозга, о соотношении его важнейших разделов — коры и подкорки и многие другие. Однако мозг состоит из десятков миллиардов нейронов, а с помощью электродов можно наблюдать лишь за десятками, да и то в поле зрения исследователей часто попадают не те клетки, которые нужны для исследования, а те, что оказались рядом с лечебным электродом.
Тем временем в мире совершалась техническая революция. Новые вычислительные возможности позволили вывести на новый уровень исследование высших функций мозга с помощью электроэнцефалографии и вызванных потенциалов. Возникли и новые методы, позволяющие «заглянуть внутрь» мозга: магнитоэнцефалография, функциональная магниторезонансная томография и позитронно-эмиссионная томография. Все это создало фундамент для нового прорыва. Он действительно произошел в середине восьмидесятых годов.
В это время научный интерес и возможность его удовлетворения совпали. Видимо, поэтому Конгресс США объявил девяностые годы десятилетием изучения человеческого мозга. Эта инициатива быстро стала международной. Сейчас во всем мире над исследова нием человеческого мозга трудятся сотни лучших лабораторий.
Надо сказать, что у нас в то время в верхних эшелонах власти было много умных и болеющих за державу людей. Поэтому и в нашей стране поняли необходимость исследования мозга человека и предложили мне на базе коллектива, созданного и руководимого академиком Бехтеревой, организовать научный центр по исследованию мозга — Институт мозга человека РАН.
Главное направление деятельности института: фундаментальные исследования организации мозга человека и его сложных психических функций — речи, эмоций, внимания, памяти. Но не только. Одновременно ученые должны вести поиск методов лечения тех больных, у которых эти важные функции нарушены. Соединение фундаментальных исследований и практической работы с больными было одним из основных принципов деятельности института, разработанных его научным руководителем Натальей Петровной Бехтеревой.
Недопустимо ставить эксперименты на человеке. Поэтому большая часть исследований мозга проводится на животных. Однако есть явления, которые могут быть изучены только на человеке. Например, сейчас молодой сотрудник моей лаборатории защищает диссертацию об обработке речи, ее орфографии и синтаксиса в различных структурах мозга. Согласитесь, что это трудно исследовать на крысе. Институт специально ориентирован на исследование того, что нельзя изучать на животных. Мы проводим психофизиологические исследования на добровольцах с применением так называемой неинвазивной техники, не «залезая» внутрь мозга и не причиняя человеку особенных неудобств. Так осуществляются, например, томографические обследования или картирование мозга с помощью электроэнцефалографии.
Но бывает, что болезнь или несчастный случай «ставят эксперимент» на человеческом мозге — например, у больного нарушается речь или память. В этой ситуации можно и нужно исследовать те области мозга, работа которых нарушена. Или, наоборот, у пациента утерян или поврежден кусочек мозга, и ученым предоставляется возможность изучить, какие свои «обязанности» мозг не может выполнять с таким нарушением.
Но просто наблюдать за такими пациентами , мягко говоря, неэтично, и в нашем институте не только исследуют больных с различными повреждениями мозга, но и помогают им, в том числе и с помощью новейших, разработанных нашими сотрудниками методов лечения. Для этой цели при институте существует клиника на 160 коек. Две задачи — исследование и лечение — неразрывно связаны в работе наших сотрудников.
У нас прекрасные высококвалифицированниые доктора и медсестры. Без этого нельзя — ведь мы на переднем крае науки, и нужна высочайшая квалификация, чтобы реализовать новые методики. Практически каждая лаборатория института замкнута на отделения клиники, и это залог непрерывного появления новых подходов. Кроме стандартных методов лечения у нас проводят хирургическое лечение эпилепсии и паркинсонизма, психохирургические операции, лечение мозговой ткани магнитостимуляцией, лечение афазии с помощью электростимуляции, а также многое другое. В клинике лежат тяжелые больные, и бывает удается помочь им в случаях, считавшихся безнадежными. Конечно, это возможно не всегда. Вообще, когда слышишь какие-либо безграничные гарантии в лечении людей, это вызывает очень серьезные сомнения.
Будни и звездные часы лабораторий
В каждой лаборатории есть свои достижения. Например, лаборатория, которой руководит профессор В. А. Илюхина, ведет разработки в области нейрофизиологии функциональных состояний головного мозга.
Что это такое? Попробую объяснить на простом примере. Каждый знает, что одна и та же фраза иногда воспринимается человеком диаметрально противоположно в зависимости от того, в каком состоянии он находится: болен или здоров, возбужден или спокоен. Это похоже на то, как одна и та же нота, извлекаемая, например, из органа, имеет разный тембр в зависимости от регистра. Наш мозг и организм — сложнейшая многорегистровая система, где роль регистра играет состояние человека. Можно сказать, что весь спектр взаимоотношений человека с окружающей средой определяется его функциональным состоянием. Оно определяет и возможность «срыва» оператора за пультом управления сложнейшей машиной, и реакцию больного на принимаемое лекарство.
В лаборатории профессора Илюхиной исследуют функциональные состояния, а также то, какими параметрами они определяются, как эти параметры и сами состояния зависят от регуляторных систем организма, как внешние и внутренние воздействия изменяют состояния, иногда вызывая болезнь, и как в свою очередь состояния мозга и организма влияют на течение заболевания и действие лекарственных средств. С помощью полученных результатов можно сделать правильный выбор между альтернативными путями лечения. Проводится и определение приспособительных возможностей человека: насколько он будет устойчив при каком-либо лечебном воздействии, стрессе.
Очень важной задачей занимается лаборатория нейроиммунологии. Нарушения иммунорегуля ции часто приводят к возникновению тяжелых заболеваний головного мозга. Это состояние надо диагносцировать и подобрать лечение — иммунокоррекцию. Типичный пример нейроиммун ного заболевания — рассеянный склероз, изучением которого в институте занимается лаборатория под руководством профессора И. Д. Столярова. Не так давно он вошел в совет Европейского комитета, занимающегося исследованием и лечением рассеянного склероза.
В двадцатом веке человек начал активно изменять окружающий его мир, празднуя победу над природой, но оказалось, что праздновать рано: при этом обостряются проблемы, созданные самим человеком, так называемые техногенные. Мы живем под воздействием магнитных полей, при свете мигающих газосветных ламп, часами смотрим на дисплей компьютера, говорим по мобильному телефону… Все это далеко не безразлично для организма человека: например, хорошо известно, что мигающий свет способен вызвать эпилептический припадок. Можно устранить вред, наносимый при этом мозгу, очень простыми мерами — закрыть один глаз. Чтобы резко снизить «поражающее действие» радиотелефона (кстати, оно еще точно не доказано), можно просто изменить его конструкцию так, чтобы антенна была направлена вниз и мозг не облучался. Этими исследованиями занимается лаборатория под руководством доктора медицинских наук Е. Б. Лыскова. Например, он и его сотрудники показали, что воздействие переменного магнитного поля отрицательно сказывается на процессе обучения.
На уровне клеток работа мозга связана с химическими превращениями различных веществ, поэтому для нас важны результаты, полученные в лаборатории молекулярной нейробиологии, руководимой профессором С. А. Дамбиновой. Сотрудники этой лаборатории разрабатывают новые методы диагностики заболеваний мозга, проводят поиск химических веществ белковой природы, которые способны нормализовать нарушения в ткани мозга при паркинсонизме, эпилепсии, наркотической и алкогольной зависимости. Оказалось, что употребление наркотиков и алкоголя приводит к разрушению нервных клеток. Их фрагменты, попадая в кровь, побуждают иммунную систему вырабатывать так называемые «аутоантитела». «Аутоантитела» остаются в крови еще долгое время, даже у людей, переставших употреблять наркотики. Это своеобразная память организма, хранящая информацию об употреблении наркотиков. Если измерить в крови человека количество аутоантител к специфическим фрагментам нервных клеток, можно поставить диагноз «наркомания» даже через несколько лет после того, как человек перестал употреблять наркотики.
Можно ли «перевоспитать» нервные клетки?
Одно из самых современных направлений в работе института — стереотаксис. Это медицинская технология, обеспечивающая возможность малотравматичного, щадящего, прицельного доступа к глубоким структурам головного мозга и дозированное воздействие на них. Это нейрохирургия будущего. Вместо «открытых» нейрохирургических вмешательств, когда, чтобы достичь мозга, делают большую трепанацию, предлагаются малотравматичные, щадящие воздействия на головной мозг.
В развитых странах, прежде всего в США, клинический стереотаксис занял достойное место в нейрохирургии. В США в этой сфере сегодня работают около 300 нейрохирургов — членов Американского стереотаксического общества. Основа стереотаксиса — математика и точные приборы, обеспечивающие прицельное погружение в мозг тонких инструментов. Они позволяют «заглянуть» в мозг живого человека. При этом используется позитронно-эмиссионная томография, магниторезонансная томография, компьютерная рентгеновская томография. «Стереотаксис — мерило методической зрелости нейрохирургии» — мнение ныне покойного нейрохирурга Л. В. Абракова. Для стереотаксического метода лечения очень важно знание роли отдельных «точек» в мозге человека, понимание их взаимодействия, знание того, где и что именно нужно изменить в мозге для лечения той или иной болезни.
В институте существует лаборатория стереотаксических методов, которой руководит доктор медицинских наук, лауреат Государственной премии СССР А. Д. Аничков. По существу, это ведущий стереотаксический центр России. Здесь родилось самое современное направление — компьютерный стереотакcис с программно-математическим обеспечением, которое осуществляется на электронной вычислительной машине. До наших разработок стереотаксические расчеты проводились нейрохирургами вручную во время операции, сейчас же у нас разработаны десятки стереотаксических приборов; некоторые прошли клиническую апробацию и способны решать самые сложные задачи. Совместно с коллегами из ЦНИИ «Электроприбор» создана и впервые в России серийно выпускается компьютеризированная стереотаксическая система, которая по ряду основных показателей превосходит аналогичные зарубежные образцы. Как выразился неизвестный автор, «наконец, робкие лучи цивилизации осветили наши темные пещеры».
В нашем институте стереотаксис применяется при лечении больных, страдающих двигательными нарушениями (паркинсонизмом, болезнью Паркинсона, хореей Гентингтона и другими), эпилепсией, неукротимыми болями (в частности, фантомно-болевым синдромом), некоторыми психическими нарушениями. Кроме того, стереотаксис используется для уточнения диагноза и лечения некоторых опухолей головного мозга, для лечения гематом, абсцессов, кист мозга. Стереотаксические вмешательства (как и все остальные нейрохирургические вмешательства) предлагаются больному только в том случае, если исчерпаны все возможности медикаментозного лечения и само заболевание угрожает здоровью пациента или лишает его трудоспособности, делает асоциальным. Все операции производятся только при согласии больного и его родственников, после консилиума специалистов разного профиля.
Существуют два вида стереотаксиса. Первый, нефункциональный, применяется тогда, когда в глубине мозга имеется какое-то органическое поражение, например опухоль. Если ее удалять с помощью обычной техники, придется затронуть здоровые, выполняющие важные функции структуры мозга и больному случайно может быть нанесен вред, иногда даже несовместимый с жизнью. Предположим, что опухоль хорошо видна с помощью магниторезонансного и позитронно-эмиссионного томографов. Тогда можно рассчитать ее координаты и ввести с помощью малотравматичного тонкого щупа радиоактивные вещества, которые выжгут опухоль и за короткое время распадутся. Повреждения при проходе сквозь мозговую ткань минимальны, а опухоль будет уничтожена. Мы провели уже несколько таких операций, бывшие пациенты живут до сих пор, хотя при традиционных методах лечения у них не было никакой надежды.
Суть этого метода в том, что мы устраняем «дефект», который четко видим. Главная задача — решить, как до него добраться, какой путь выбрать, чтобы не задеть важные зоны, какой метод устранения «дефекта» выбрать.
Принципиально другая ситуация при «функциональном» стереотаксисе, который тоже применяется при лечении психических заболеваний. Причина болезни часто заключается в том, что одна маленькая группа нервных клеток или несколько таких групп работают неправильно. Они либо не выделяют необходимые вещества, либо выделяют их слишком много. Клетки могут быть патологически возбуждены, и тогда стимулируют «нехорошую» активность других, здоровых клеток. Эти «сбившиеся с пути» клетки надо найти и либо уничтожить, либо изолировать, либо «перевоспитать» с помощью электростимуляции. В такой ситуации нельзя «увидеть» пораженный участок. Мы должны его вычислить чисто теоретически, как астрономы вычислили орбиту Нептуна.
Именно здесь для нас особенно важны фундаментальные знания о принципах работы мозга, о взаимодействии его участков, о функциональной роли каждого участка мозга. Мы используем результаты стереотаксической неврологии — нового направления, разработанного в институте покойным профессором В. М. Смирновым. Стереотаксическая неврология — это «высший пилотаж», однако именно на этом пути нужно искать возможность лечения многих тяжелых заболеваний, в том числе и психических.
Результаты наших исследований и данные других лабораторий указывают на то, что практически любая, даже очень сложная психическая деятельность мозга обеспечивается распределенной в пространстве и изменчивой во времени системой, состоящей из звеньев различной степени жесткости. Понятно, что вмешиваться в работу такой системы очень трудно. Тем не менее сейчас мы это умеем: например, можем создать новый центр речи взамен разрушенного при травме.
При этом происходит своеобразное «перевоспитание» нервных клеток. Дело в том, что существуют нервные клетки, которые от рождения готовы к своей работе, но есть и другие, которые «воспитываются» в процессе развития человека. Научаясь выполнять одни задачи, они забывают другие, но не навсегда. Даже пройдя «специализацию», они в принципе способны взять на себя выполнение каких-то других задач, могут работать и по-другому. Поэтому можно попытаться заставить их взять на себя работу утраченных нервных клеток, заменить их.
Нейроны мозга работают как команда корабля: один хорошо умеет вести судно по курсу, другой — стрелять, третий — готовить пищу. Но ведь и стрелка можно научить готовить борщ, а кока — наводить орудие. Нужно только объяснить им, как это делается. В принципе это естественный механизм: если травма мозга произошла у ребенка, у него нервные клетки самопроизвольно «переучиваются». У взрослых же для «переучивания» клеток нужно применять специальные методы.
Этим и занимаются исследователи — пытаются стимулировать одни нервные клетки выполнять работу других, которые уже нельзя восстановить. В этом направлении уже получены хорошие результаты: например, некоторых пациентов с нарушением области Брока, отвечающей за формирование речи, удалось обучить говорить заново.
Другой пример — лечебное воздействие психохирургических операций, направленных на «выключение» структур области мозга, называемой лимбической системой. При разных болезнях в разных зонах мозга возникает поток патологических импульсов, которые циркулируют по нервным путям. Эти импульсы появляются в результате повышенной активности зон мозга, и такой механизм приводит к целому ряду хронических заболеваний нервной системы, таких, как паркинсонизм, эпилепсия, навязчивые состояния. Пути, по которым проходит циркуляция патологических импульсов, надо найти и максимально щадяще «выключить».
В последние годы проведены многие сотни (особенно в США) стереотаксических психохирургических вмешательств для лечения больных, страдающих некоторыми психическими нарушениями (прежде всего, навязчивыми состояниями), у которых оказались неэффективными нехирургические методы лечения. По мнению некоторых наркологов, наркоманию тоже можно рассматривать как разновидность такого рода расстройства, поэтому в случае неэффективности медикаментозного лечения может быть рекомендовано стереотаксическое вмешательство.
Детектор ошибок
Очень важное направление работы института — исследование высших функций мозга: внимания, памяти, мышления, речи, эмоций. Этими проблемами занимаются несколько лабораторий, в том числе та, которой руковожу я, лаборатория академика Н. П. Бехтеревой, лаборатория доктора биологических наук Ю. Д. Кропотова.
Присущие только человеку функции мозга исследуются с помощью различных подходов: используется «обычная» электроэнцефалограмма, но на новом уровне картирования мозга, изучение вызванных потенциалов, регистрация этих процессов совместно с импульсной активностью нейронов при непосредственном контакте с мозговой тканью — для этого применяются имплантированные электроды и техника позитронно-эмиссионной томографии.
Работы академика Н. П. Бехтеревой в этой области достаточно широко освещались в научной и научно-популярной печати. Она начала планомерное исследование психических процессов в мозге еще тогда, когда большинство ученых считали это практически непознаваемым, делом далекого будущего. Как хорошо, что хотя бы в науке истина не зависит от позиции большинства. Многие из тех, кто отрицал возможность таких исследований, теперь считают их приоритетными.
В рамках этой статьи можно упомянуть только о самых интересных результатах, например о детекторе ошибок. Каждый из нас сталкивался с его работой. Представьте, что вы вышли из дому и уже на улице вас начинает терзать странное чувство — что-то не так. Вы возвращаетесь — так и есть, забыли выключить свет в ванной. То есть, вы забыли выполнить обычное, стереотипное действие — щелкнуть выключателем, и этот пропуск автоматически включил контрольный механизм в мозге. Этот механизм в середине шестидесятых был открыт Н. П. Бехтеревой и ее сотрудниками. Несмотря на то, что результаты были опубликованы в научных журналах, в том числе и зарубежных, сейчас они «переоткрыты» на Западе людьми, знающими работы наших ученых, но не гнушающимися прямым заимствованием у них. Исчезновение великой державы привело и к тому, что в науке стало больше случаев прямого плагиата.
Детекция ошибок может стать и болезнью, когда этот механизм работает больше, чем нужно, и человеку все время кажется, что он что-то забыл.
В общих чертах нам сегодня ясен и процесс запуска эмоций на уровне мозга. Почему один человек с ними справляется, а другой — «западает», не может вырваться из замкнутого круга однотипных переживаний? Оказалось, что у «стабильного» человека изменения обмена веществ в мозге, связанные, например, с горем, обязательно компенсируются направленными в другую сторону изменениями обмена веществ в других структурах. У «нестабильного» же человека эта компенсация нарушена.
Кто отвечает за грамматику?
Очень важное направление работы — так называемое микрокартирование мозга. В наших совместных исследованиях обнаружены даже такие механизмы, как детектор грамматической правильности осмысленной фразы. Например, «голубая лента» и «голубой лента». Смысл понятен в обоих случаях. Но есть одна «маленькая, но гордая» группа нейронов, которая «взвивается», когда грамматика нарушена, и сигнализирует об этом мозгу. Зачем это нужно? Вероятно, затем, что понимание речи часто идет в первую очередь за счет анализа грамматики (вспомним «глокую куздру» академика Щербы). Если с грамматикой что-то не так, поступает сигнал — надо проводить добавочный анализ.
Найдены микроучастки мозга, которые отвечают за счет, за различение конкретных и абстрактных слов. Показаны различия в работе нейронов при восприятии слова родного языка (чашка), квазислова родного языка (чохна) и слова иностранного (вахт — время по-азербайджански).
В этой деятельности по-разному участвуют нейроны коры и глубоких структур мозга. В глубоких структурах в основном наблюдается увеличение частоты электрических разрядов, не очень «привязанное» к какой-то определенной зоне. Эти нейроны как бы любую задачу решают всем миром. Совершенно другая картина в коре головного мозга. Один нейрон словно говорит: «А ну-ка, ребята, помолчите, это мое дело, и я буду выполнять его сам». И действительно, у всех нейронов, кроме некоторых, понижается частота импульсации, а у «избранников» повышается.
Благодаря технике позитронно-эмиссионной томографии (или сокращенно ПЭТ) стало возможно детальное изучение одновременно всех областей мозга, отвечающих за сложные «человеческие» функции. Суть метода состоит в том, что малое количество изотопа вводят в вещество, участвующее в химических превращениях внутри клеток мозга, а затем наблюдают, как меняется распределение этого вещества в интересующей нас области мозга. Если к этой области усиливается приток глюкозы с радиоактивной меткой — значит, увеличился обмен веществ, что говорит об усиленной работе нервных клеток на этом участке мозга.
А теперь представьте, что человек выполняет какое-то сложное задание, требующее от него знания правил орфографии или логического мышления. При этом у него наиболее активно работают нервные клетки в области мозга, «ответственной» именно за эти навыки. Усиление работы нервных клеток можно зарегистрировать с помощью ПЭТ по увеличению кровотока в активизированной зоне. Таким образом удалось определить, какие области мозга «отвечают» за синтаксис, орфографию, смысл речи и за решение других задач. Например, известны зоны, которые активизируются при предъявлении слов, неважно, надо их читать или нет. Есть и зоны, которые активизируются, чтобы «ничего не делать», когда, например, человек слушает рассказ, но не слышит его, следя за чем-то другим.
Что такое внимание?
Не менее важно понять, как «работает» внимание у человека. Этой проблемой в нашем институте занимается и моя лаборатория, и лаборатория Ю. Д. Кропотова. Исследования ведутся совместно с коллективом ученых под руководством финского профессора Р. Наатанена, который открыл так называемый механизм непроизвольного внимания. Чтобы понять, о чем идет речь, представьте ситуацию: охотник крадется по лесу, выслеживая добычу. Но он и сам является добычей для хищного зверя, которого не замечает, потому что настроен только на поиск оленя или зайца. И вдруг случайный треск в кустах, может быть, и не очень заметный на фоне птичьего щебета и шума ручья, мгновенно переключает его внимание, подает сигнал: «Рядом опасность». Механизм непроизвольного внимания сформировался у человека в глубокой древности, как охранный механизм, но работает и сейчас: например, водитель ведет машину, слушает радио, слышит крики детей, играющих на улице, воспринимает все звуки окружающего мира, внимание его рассеянно, и вдруг тихий стук мотора мгновенно переключает его внимание на машину — он осознает, что с двигателем что-то не в порядке (кстати, это явление похоже на детектор ошибок).
Такой переключатель внимания работает у каждого человека. Мы обнаружили зоны, которые активизируются на ПЭТ при работе этого механизма, а Ю. Д. Кропотов исследовал его с помощью метода имплантированных электродов. Иногда в самой сложной научной работе бывают смешные эпизоды. Так было, когда мы в спешке закончили эту работу перед очень важным и престижным симпозиумом. Ю. Д. Кропотов и я поехали на симпозиум делать доклады, и только там с удивлением и «чувством глубокого удовлетворения» неожиданно выяснили, что активизация нейронов происходит в одних и тех же зонах. Да, иногда двоим сидящим рядом надо поехать в другую страну, чтобы поговорить.
Если механизмы непроизвольного внимания нарушаются, то можно говорить о болезни. В лаборатории Кропотова изучают детей с так называемым дефицитом внимания и гиперактивностью. Это трудные дети, чаще мальчики, которые не могут сосредоточиться на уроке, их часто ругают дома и в школе, а на самом деле их нужно лечить, потому что у них нарушены некоторые определенные механизмы работы мозга. Еще недавно это явление не рассматривалось как болезнь и лучшим методом борьбы с ним считались «силовые» методы. Мы сейчас можем не только определить это заболевание, но и предложить методы лечения детей с дефицитом внимания.
Однако хочется огорчить некоторых молодых читателей. Далеко не каждая шалость связана с этим заболеванием, и тогда… «силовые» методы оправданы.
Кроме непроизвольного внимания есть еще и селективное. Это так называемое «внимание на приеме», когда все вокруг говорят разом, а вы следите только за собеседником, не обращая внимания на неинтересную вам болтовню соседа справа. Во время эксперимента испытуемому рассказывают истории: в одно ухо — одну, в другое — другую. Мы следим за реакцией на историю то в правом ухе, то в левом и видим на экране, как радикально меняется активизация областей мозга. При этом активизация нервных клеток на историю в правом ухе значительно меньше — потому, что большинство людей берут телефонную трубку в правую руку и прикладывают ее к правому уху. Им следить за историей в правом ухе проще, нужно меньше напрягаться, мозг возбуждается меньше.
Тайны мозга еще ждут своего часа
Мы часто забываем очевидное: человек - это не только мозг, но еще и тело. Нельзя понять работу мозга, не рассматривая все богатство взаимодействия мозговых систем с различными системами организма. Иногда это очевидно — например, выброс в кровь адреналина заставляет мозг перейти на новый режим работы. В здоровом теле — здоровый дух — это именно о взаимодействии тела и мозга. Однако далеко не все здесь понятно. Изучение этого взаимодействия еще ждет своих исследователей.
Сегодня можно сказать, что мы хорошо представляем, как работает одна нервная клетка. Многие белые пятна исчезли и на карте мозга, определены области, отвечающие за психические функции. Но между клеткой и областью мозга находится еще один, очень важный уровень — совокупность нервных клеток, ансамбль нейронов. Здесь пока еще много неясного. С помощью ПЭТ мы можем проследить, какие области мозга «включаются» при выполнении тех или иных задач, а вот что происходит внутри этих областей, какие сигналы посылают друг другу нервные клетки, в какой последовательности, как они взаимодействуют между собой — об этом мы пока знаем мало. Хотя определенный прогресс есть и в этом направлении.
Раньше считали, что мозг поделен на четко разграниченные участки, каждый из которых «отвечает» за свою функцию: это зона сгибания мизинца, а это зона любви к родителям. Эти выводы основывались на простых наблюдениях: если данный участок поврежден, то и функция его нарушена. Со временем стало ясно, что все более сложно: нейроны внутри разных зон взаимодействуют между собой весьма сложным путем и нельзя осуществлять везде четкую «привязку» функции к области мозга в том, что касается обеспечения высших функций. Можно только сказать, что эта область имеет отношение к речи, к памяти, к эмоциям. А сказать, что этот нейронный ансамбль мозга (не кусочек, а широко раскинутая сеть) и только он отвечает за восприятие букв, а этот — слов и предложений, пока нельзя. Это задача будущего.
Работа мозга по обеспечению высших видов психической деятельности похожа на вспышку салюта: мы видим сначала множество огней, а потом они начинают гаснуть и снова загораться, перемигиваясь между собою, какие-то кусочки остаются темными, другие вспыхивают. Также и сигнал возбуждения посылается в определенную область мозга, но деятельность нервных клеток внутри нее подчиняется своим особым ритмам, своей иерархии. В связи с этими особенностями разрушение одних нервных клеток может оказаться невосполнимой потерей для мозга, а другие вполне могут заменить соседние «переучившиеся» нейроны. Каждый нейрон может рассматриваться только внутри всего скопления нервных клеток. По-моему, сейчас основная задача — расшифровка нервного кода, то есть понимание того, как конкретно обеспечиваются высшие функции мозга. Скорее всего, это можно будет сделать через исследование взаимодействия элементов мозга, через понимание того, как отдельные нейроны объединяются в структуру, а структура — в систему и в целостный мозг. Это главная задача следующего века. Хотя кое-что еще осталось и на долю двадцатого.
Словарик
Афазия — расстройство речи в результате повреждения речевых зон мозга или нервных путей, ведущих к ним.
Магнитоэнцефалография — регистрация магнитного поля, возбуждаемого электрическими источниками в мозге.
Магниторезонансная томография - томографическое исследование мозга, основанное на явлении ядерного магнитного резонанса.
Позитрон-эмиссионная томография — высокоэффективный способ слежения за чрезвычайно малыми концентрациями ультракороткоживущих радионуклидов, которыми помечены физиологически значимые соединения в мозге. Используется для изучения обмена веществ, участвующих в реализации функций мозга.
12 интересных фактов о мозге
Мы поговорили об этом с главой подразделения конфокальной микроскопии Института им. Вейцмана (Израиль), профессором Эдуардом Коркотяном.

1. Даже младенцы теряют нервные клетки.
Сколько нейронов (нервных клеток) в мозге человека? У нас их около 85 миллиардов. Для сравнения, у медузы — всего 800, у таракана — миллион, а у осьминога — 300 млн.
Многие считают, что нервные клетки гибнут лишь в пожилые годы, но большая их часть теряется нами еще в детстве, когда в голове ребенка происходит процесс естественного отбора.
Как в джунглях, среди нейронов выживают наиболее эффективные и приспособленные.
Если нервная клетка простаивает без работы, у нее включается механизм самоликвидации.
Целые сети нейронов в мозгу малыша борются за существование. Они с разной быстротой и разной эффективностью решают одни и те же насущные задачи, отвечают на бесчисленные вопросы, как команды знатоков в игре «Что, где, когда?».
Проиграв в честной борьбе, слабые команды выбывают, освобождая место победителям. Это ни плохо, ни хорошо, это нормально. Таков суровый, но необходимый процесс естественного отбора в мозге — нейродарвинизм.
2. Нейронов – миллиарды.
Бытует мнение, что каждая нервная клетка — это простейший элемент памяти, как один бит информации в памяти компьютера. Несложные подсчеты показывают, что в этом случае кора нашего мозга вмещала бы всего 1-2 гигабита или не более 250 мегабайт памяти, что никак не соответствуют тому объему слов, знаний, понятий, образов и прочей информации, которой мы владеем. Конечно, нейронов огромное количество, но их, безусловно, не хватит, чтобы вместить все это. Каждый нейрон является интегратором и носителем, множества элементов памяти — синапсов.
3. Гениальность не зависит от размера мозга
Мозг человека весит примерно 1200 — 1400 грамм. Мозг Эйнштейна, к примеру, 1 230 г, не самый большой. Мозг слона почти в четыре раза больше, самый крупный мозг у кашалота — 6800 граммов. Дело здесь не в массе.

В чем разница между мозгом гения и обычного человека? По обложке книги или по числу страниц никогда не скажешь, вышла она из-под пера мастера или графомана. Кстати, и среди преступников попадаются весьма умные люди. Для оценки нужны совершено другие единицы измерения, которых пока не существует. Но в целом мощность мозга зависит от числа синаптических контактов (мозг состоит отнюдь не из одних нейронов, в нем заключено огромное множество вспомогательных клеток. Его пересекают большие и малые кровеносные сосуды, а в центре мозга скрыты четыре так называемых мозговых желудочка, заполненных цереброспинальной жидкостью…).
Главную интеллектуальную мощь мозга составляют нейроны его коры. Особенно важна плотность синаптических контактов между нейронами, а никак не физический вес. Ведь не станем же мы по весу в килограммах определять быстроту компьютера.
По этому показателю мозг животных, даже высших приматов, существенно меньше человеческого. Мы проигрываем животным в скорости бега, в силе и выносливости, в способности лазить по деревьям.… Собственно, во всем, кроме ума.
Мышление, сознание — это то, что отличает человека от животных. Тогда возникает вопрос: почему бы человеку не обзавестись еще более вместительным мозгом?
Ограничивающим фактором является сама анатомия человека. Размер нашего мозга, в конце концов, определяется размером родовых путей женщины, которая не сможет родить ребенка со слишком большой головой. В каком-то смысле мы — пленники собственного строения. И в этом смысле человек не может стать существенно умнее, если только в один прекрасный день не изменит себя сам.
4. Многие болезни можно будет лечить, внедряя в нервные клетки новые гены.
Генетика — невероятно успешная наука. Мы научились не только исследовать гены, но и создаем новые, перепрограммируем их. Пока это лишь эксперименты на животных, и идут они более чем успешно. Близится время, когда многие болезни можно будет вылечить, внедряя в клетки новые или модифицированные гены. Не проводятся ли опыты над человеком? Тайные лаборатории существуют только в фантастических фильмах. Такие научные манипуляции осуществимы только в крупных научных центрах и требуют больших усилий. Беспокойство о несанкционированном взломе человеческого генома на сегодняшний день лишено оснований.

5. Человек использует лишь толику возможностей своего мозга? Это миф.
Многие почему-то считают, что человек использует лишь небольшую часть возможностей своего мозга (скажем, 10, 20 и так далее процентов). Трудно сказать, откуда взялся этот странный миф. Верить в него не стоит. Эксперименты показывают, что нервные клетки, не задействованные в работе мозга, погибают.
Природа рациональна и экономна. В ней ничего не откладывается на всякий случай, про запас. Живым существам невыгодно и просто вредно содержать в мозгу «бездельников». Лишних клеток у нас нет.
6. Нервные клетки восстанавливаются.
Несколько лет назад в 83-летнем возрасте скончался очень известный пациент, американец Генри Моллисон. Еще в молодости врачи, чтобы сохранить ему жизнь, полностью удалили из мозга гиппокамп (от греческого — морской конек), являвшийся источником эпилепсии. Результат оказался тяжелым и неожиданным. Больной потерял способность что-либо запоминать. Он остался совершенно нормальным человеком, мог поддерживать беседу. Но стоило вам выйти за дверь всего на несколько минут, и он воспринимал вас как совершенно незнакомого человека. Каждое утро на протяжении десятков лет Моллисону приходилось заново познавать мир в той его части, каким мир стал после операции (все, что предшествовало операции, больной помнил). Так, волею случая, было установлено, что гиппокамп отвечает за формирование новой памяти. В гиппокампе восстановление нервных клеток (нейрогенез) происходит сравнительно интенсивно. Но значение нейрогенеза не следует переоценивать, его вклад все же невелик.

Дело не в том, что организм злонамеренно желает навредить себе. Центральная нервная система похожа на сложную сеть волокон, на переплетенный клубок проводов. Создать новую нервную клетку организму было бы несложно. Однако сама сеть давно уже сформирована. Как же в нее встроиться новой клетке, чтобы не создать помех? Это можно было бы сделать, найдись в мозгу инженер, который разберется в клубке «проводов». К сожалению, такой должности в мозгу не предусмотрено. Поэтому восстановление клеток мозга взамен утраченных затруднено. Немного помогает слоистая структура коры больших полушарий, она помогает новым клеткам встраиваться в нужное место. Благодаря этому небольшое восстановление нервных клеток все-таки существует.
7. Как одна часть мозга спасает другую
Ишемический инсульт мозга — тяжелая болезнь. Она связана с закупоркой кровеносных сосудов, подводящих кровь. Мозговая ткань чрезвычайно чувствительна к кислородному голоданию и быстро отмирает вокруг закупорившегося сосуда. Если зона поражения не находится в одном из жизненно важных центров, человек выживает, но при этом может частично утратить подвижность или речь. Тем не менее, через продолжительное время (иногда — месяцы, годы) утраченная функция частично восстанавливается. Если нейронов не становится больше, то за счет чего это происходит? Известно, что кора головного мозга имеет симметричное строение. Все ее структуры поделены на две половины, левую и правую, но поражена лишь одна из них. Со временем можно заметить медленное прорастание отростков нейронов из сохранившейся структуры в пострадавшую. Отростки удивительным образом находят правильный путь и частично компенсируют возникший недостаток. Точные механизмы этого процесса остаются неизвестными. Если мы научимся управлять процессом восстановления, регулировать его, это не только поможет при лечении инсультов, но и раскроет одну из самых больших тайн мозга.
8. Когда-то левое полушарие победило правое
Кора головного мозга, как все мы знаем, состоит из двух полушарий. Они несимметричны. Как правило, левое — важнее. Мозг устроен так, что правая часть управляет левой стороной тела, и наоборот. Именно поэтому, у большинства людей доминирует правая рука, управляемая левым полушарием. Между двумя полушариями существует своеобразное разделение труда. Левое отвечает за мышление, сознание и речь. Именно оно мыслит логически и совершает математические операции. Речь — не просто инструмент общения, не только способ передать мысль. Чтобы понять явление или предмет, нам совершенно необходимо его назвать. Например, обозначив класс абстрактным понятием «9а» мы избавляем себя от необходимости всякий раз перечислять всех учеников. Абстрактное мышление свойственно человеку, и лишь в малой степени — некоторым животным. Оно невероятно ускоряет и усиливает мышление, поэтому речь и мышление в каком-то смысле очень близкие понятия.
Правое полушарие отвечает за распознавание образов, эмоциональное восприятие. Оно почти не умеет говорить. Откуда это известно? «Помогла» эпилепсия. Обычно болезнь гнездится только в одном полушарии, но может перекинуться и на второе. В 60-ые годы прошлого века врачи задумались о том, нельзя ли перерезать связи между обоими полушариями ради спасения жизни пациента. Несколько таких операций было проведено. Когда у пациентов прервана естественная связь левого и правого полушарий, то и у исследователя появляется возможность «разговаривать» с каждым из них по отдельности. Было установлено, что у правого полушария весьма ограниченный запас слов. Оно может изъясняться простыми фразами, но абстрактное мышление правому полушарию недоступно. Вкусы и взгляды на жизнь у двух полушарий могут сильно различаться и даже вступать в явные противоречия.
У животных нет центров речи, поэтому и явной асимметрии полушарий у них не выявлено.
Существует гипотеза о том, что несколько тысяч лет назад полушария мозга человека были вполне равноправны. Психологи полагают, что «голоса», так часто упоминаемые в древних источниках, были не чем иным как голосом правого полушария, а не метафорой или художественным приемом.
Как же получилось, что левое полушарие стало доминировать? С развитием мышления и речи одно из полушарий просто обязано было «победить», а другое «уступить», потому что двоевластие в пределах одной личности нерационально. По какой-то причине победа досталась левому полушарию, но нередко встречаются люди, у которых, напротив, доминирует правое полушарие.
9. У правого полушария словарный запас ребенка, зато фантазия круче

Важнейшая функция правого полушария — восприятие зрительных образов.
Представим себе картину, висящую на стене. А теперь мысленно расчертим ее на квадратики и начнем постепенно закрашивать их случайным образом. Детали рисунка начнут пропадать, но пройдет довольно много времени, прежде чем мы перестанем понимать, что же именно изображено на картине.
Наше сознание обладает удивительной способностью воссоздавать картину по отдельным фрагментам.
Кроме того, мы наблюдаем динамичный, подвижный мир, почти как в кино. Фильм не рисуется нам в виде отдельных сменяющихся кадров, а воспринимается в постоянном движении.
Еще одной удивительной способностью, которой мы наделены, является умение видеть мир объемным, трехмерным. Совершенно плоская картина отнюдь не кажется плоской.
Одной только силой воображения правое полушарие нашего мозга наделяет картину глубиной.
10. Мозг начинает «стареть» после 20 лет
Главная задача мозга — усваивать прижизненный опыт. В отличие от наследственных признаков, которые остаются неизменными на протяжении всей жизни, мозг способен учиться и запоминать. Однако он не безразмерен и в какой-то момент может просто переполниться, так, что свободного места в памяти больше не будет. В таком случае мозг начнет стирать старые «файлы». Но это чревато серьезной опасностью того, что сотрется нечто важное ради какой-нибудь чепухи. Чтобы этого не произошло, эволюция нашла любопытный выход.
До 18-20 лет мозг активно и неразборчиво поглощает любую информацию. Успешно дожив до этих лет, которые в прошлом считались солидным возрастом, мозг постепенно меняет стратегию с запоминания на сохранение того, что усвоено, дабы не подвергать накопленные знания опасности случайного стирания. Процесс этот происходит медленно и планомерно на протяжении всей жизни каждого из нас. Мозг становится все более консервативным. Поэтому с годами ему все труднее осваивать новое, зато усвоенные знания надежно закрепляются.

Этот процесс не является болезнью, с ним трудно и даже практически невозможно бороться. И это лишний аргумент в пользу того, как важно учиться в молодые годы, когда учеба дается легко. Но и для людей постарше имеются хорошие вести. Далеко не все свойства мозга с годами ослабевают. Словарный запас, количество абстрактных образов, способность рационально и здраво мыслить не утрачиваются и даже продолжают расти.
Там, где молодой неопытный разум запутается, перебирая различные варианты, мозг постарше быстрее найдет эффективное решение благодаря лучшей стратегии мышления. Кстати, чем образованнее человек, чем больше он тренирует свой мозг, тем меньше вероятность заболеваний мозга.
11. Мозгу нельзя сделать больно
Мозг лишен каких-либо чувствительных нервных окончаний, поэтому ему не бывает ни жарко, ни холодно, ни щекотно, ни больно. Это и понятно, если учесть, что он лучше любого другого органа защищен от воздействий внешней среды: добраться до него непросто. Мозг ежесекундно получает точную и разнообразную информацию о состоянии самых удаленных уголков своего тела, знает о любых потребностях, и наделен правом удовлетворить их или отложить на потом. Но себя мозг никак не ощущает: когда у нас болит голова — это лишь сигнал от болевых рецепторов мозговых оболочек.
12. Полезная пища для мозга
Как и все органы тела, мозг нуждается в источниках энергии и в строительных материалах. Иногда говорят, что мозг питается исключительно глюкозой. Действительно около 20% всей глюкозы потребляется именно мозгом, но он, как и любой другой орган, нуждается во всем комплексе питательных веществ. Целые белки никогда не проникают в мозг, перед этим они расщепляются на отдельные аминокислоты. То же касается и сложных липидов, которые перевариваются до жирных кислот, таких как омега-3 или омега-6. Некоторые витамины, например С, проникают в мозг самостоятельно, а такие как В6 или В12 переносятся проводниками.
Следует быть осторожными, употребляя продукты, богатые цинком, например, такие как устрицы, арахис, арбузные семечки. Существует гипотеза о том, что цинк накапливается в мозге и со временем может привести к развитию болезни Альцгеймера.
Многие питательные вещества, особенно важные для мозга, такие как: витамины D3, В12, креатин, карнозин, омега-3 содержатся только в мясе, рыбе и яйцах. Поэтому модное ныне вегетарианство трудно назвать полезным для клеток мозга.
Как работает наш мозг и как улучшить его работу
Человеческий мозг – самый сложный биологический механизм, регулирующий и координирующий все жизненные функции. Как устроен мозг и на сколько процентов он задействован. Каковы механизмы его работы и как мы можем помочь мозгу работать эффективнее.

Как заставить мозг работать в полную силу
Человеческий мозг называют самым сложным биологическим механизмом, который создала природа. Он регулирует и координирует все жизненные функции человека и контролирует его поведение.
С его работой связаны все мысли и чувства, желания и ощущения. Если мозг перестает функционировать, человек впадает в вегетативное состояние: утрачивает способность что-либо чувствовать, на что-либо реагировать и способность действовать, одним словом – деградирует.
Дать полный ответ, как устроен мозг и как он работает, невозможно. Загадки начинаются с вопроса, как он возник, и заканчиваются вопросами о его связях с невидимым тонким миром Вселенной, которые влияют на глубины человеческого подсознания. Его потенциал вряд ли будет когда-либо раскрыт полностью. Так сложилось, что этот совершенный механизм должен изучать себя сам.
Как устроен человеческий мозг?
Мозг взрослого человека в среднем составляет 1,5 кг – это всего лишь 2% от общего веса тела. (Однако доказано, что уровень ума и интеллекта не зависит от веса мозга.) Его собственные энергетические запасы очень малы, поэтому он очень зависит от снабжения кислородом. Мозг весь пронизан не одной сотней тысяч кровеносных сосудов – таким образом он поглощает 20% кислорода, получаемого легкими.
Если вдруг человеку по каким-то причинам приходится голодать, его мозг страдает в последнюю очередь, поскольку большая часть питательных веществ направляется на поддержание его работы. При потере массы тела на 50% мозг теряет всего 15% веса.
Эти факты говорят о том, что мозг в организме человека занимает привилегированное положение. Он внешнего мира его нежные ткани защищает черепная коробка, внутри же от сотрясений его оберегает спинномозговая жидкость.
Мозг покрыт тонким серым слоем с бороздками и извилинами – это кора головного мозга. Здесь находится его мыслительный центр. Кора представляет собой нервную ткань, состоящую из нескольких миллиардов нейронов, благодаря которым осуществляются прямые и обратные связи – информация от органов чувств поступает в кору, а после обработки отсылается обратно в виде команд для действия разных участков тела.
70% мозга составляют большие полушария – правое и левое. Они соединены мозолистым телом, благодаря которому могут обмениваться информацией. Правое и левое полушария симметричны и представляют собой как бы 2 мозга, каждый из которых руководит своими процессами, и в то же время они помогают друг другу.
Правое и левое полушарие состоят из лобной, теменной, затылочной и височной доли. В каждой из них находятся центры, отвечающие за определенную деятельность: височная – за слух, память и речь; затылочная – за зрительные ощущения, лобная – за двигательную активность, теменная – за телесные ощущения. Под затылочными долями полушарий находится мозжечок, отвечающий за координацию движений и равновесие тела. А под корой головного мозга – таламус, контролирующий внимание и бодрствование, и гипоталамус, регулирующий процессы саморегуляции организма.
Это лишь самое поверхностное описание такого сложнейшего органа, как человеческий мозг. И если с точки зрения физиологии он изучен далеко не полностью, то о том, как происходят в нем мыслительные процессы, известно еще меньше. Людей волнует вопрос: является ли духовная жизнь человека, его мысли, чувства и эмоции следствием физических и химических процессов, происходящих в нем, или это что-то другое – еще не изученное и таинственное
Любопытно, что еще в 19 в. некий архимандрит Борис в своем сочинении «О невозможности чисто физиологического объяснения душевной жизни человека» утверждал, что несмотря на то, что жизнь души является результатом работы мозга, психические явления «имеют свое подлинное бытие вне головного мозга». Однако каким образом, «сие нам неизвестно». С ним соглашаются и люди науки, например физиолог из Англии Ч.Шеррингтон. Он считал, что мысль рождается за пределами материи, но поскольку она возникает в головах людей, они думают, что произвели ее сами.
На сколько процентов работает мозг человека
Ученные не однократно пытались оценить, на сколько работает мозг человека, и в результате их исследований, в прошлом веке, возникло множество ложных теорий. По одной из них считалось, что человек использует только 3% от его потенциала, в то время как другие утверждали, что 15-20 процентов.
Миф о 10% мозга
В 1936 году в предисловии к книге Дэйла Карнеги «Как завоёвывать друзей и оказывать влияние на людей» американский писатель Лоуэлл Томас написал «Профессор Уильям Джеймс говорит, что люди используют лишь 10 процентов своих умственных способностей».
Нейробиолог Барри Гордон характеризует миф как «смехотворно ошибочный», добавляя: «мы используем практически все части мозга, и они активны практически постоянно». Барри Бейерштейн приводит аргументы, опровергающие миф о десяти процентах:
- Исследования повреждений мозга: если 90% мозга обычно не используется, повреждения этих частей не должно влиять на его работу. Практика же показывает, что почти не существует областей, которые могут быть повреждены без потери способностей. Даже небольшие повреждения могут приводить к огромным последствиям.
- Мозг обходится телу довольно дорого в плане потребления кислорода и питательных веществ. Он может требовать до 20% всей энергии тела, при этом составляя лишь 2% массы. Если бы 90% были не нужны, люди с меньшим, более эффективным мозгом имели бы эволюционное преимущество – остальным сложнее было бы проходить естественный отбор. Отсюда также очевидно, что такой большой мозг не мог бы даже появиться, если бы в нём не было потребности.
- Сканирование: технологии вроде позитронно-эмиссионной томографии и функциональной магнитно-резонансной томографии позволяют наблюдать работу живого мозга. Они показали, что даже во время сна в мозге имеется некая активность. «Глухие» зоны появляются лишь в случае сильных повреждений.
- Локализация функций: вместо того, чтобы быть единой массой, мозг делится на отделы, которые выполняют различные функции. На определение функций каждого отдела были потрачены многие годы, и отделений, не выполняющих никаких функций, обнаружено не было.
- Микроструктурный анализ: при регистрации деятельности отдельных нейронов учёные наблюдают за жизнедеятельностью отдельно взятой клетки. Если бы 90% мозга бездействовала, это сразу бы заметили.
- Нейронные заболевания: клетки мозга которые не используются, имеют тенденцию вырождаться. Следовательно, если 90% мозга были бы неактивны, то вскрытие мозга взрослого человека показало бы масштабное вырождение.
Другим аргументом является то, что большой размер мозга требует увеличения черепа, что повышает риск смерти при рождении. Такое давление обязательно избавило бы популяцию от лишнего мозга. Таким образом получается, что мы используем 100% мозга в целом, но для каждой задачи используется свой участок и намного меньше процентов.
Как начинается мыслительная деятельность?
Пытаются разобраться, как работает мозг человека с точки зрения происходящих в нем мыслительных процессов, и современные ученые. Ведь зная, как мозг думает, можно понять, как стимулировать его работу. Итак, чтобы мозг начал думать, в него должна поступить информация, то есть он должен иметь то, о чем думать. Таким образом, начать мыслить означает начать оперировать имеющейся информацией.
Как информация поступает в мозг?
1. Первоначальная информация является сенсорной – она воспринимается от органов чувств, и это то, что мы видим, слышим и ощущаем. Чем сильнее внимание будет сконцентрировано на сенсорных ощущениях, тем больше информации поступит в память. А внимание усиливается, когда человеку что-то интересно. Например, если он постоянно ходит на работу одной и той же дорогой, его мозг как бы уходит в спячку и задействован примерно на 5%. Если же он меняет маршрут, мозг «просыпается», чтобы воспринять новую информацию
2. Такой сенсорный вид информации хранится в памяти совсем недолго, ведь ее поступает довольно много. Мозг должен отделить более важную от менее важной, чтобы более важную переместить из краткосрочной памяти в долгосрочную. Для этого надо, чтобы разные свойства объекта объединились и сложились в образ. Например, чтобы запомнить имя нового знакомого или его телефон, необходимо услышанную и увиденную информацию связать с его внешностью, обстоятельствами встречи и пр.
3. Далее сформировавшийся образ наделяется личностным смыслом. К примеру, у кого-то при виде кошки возникают положительные эмоции, а у кого-то, страдающего аллергией, – отрицательные.
4. Накопленный запас образов и понятий, наделенных личностным смыслом, позволяет осуществлять мыслительные операции, позволяющие проникать вглубь проблемы и решать определенные задачи.
5. Формой мышления является суждение (или высказывание) – мысль о предмете, в которой путем отрицания или утверждения раскрываются его признаки.
6. На основе суждений человек делает умозаключение. Например, увидев утром на улице лужи, он приходит к выводу, что ночью шел дождь.
Как помочь мозгу работать эффективнее?
1. Переработку всей информации: ее получение, проведение и передачу другим клеткам осуществляют нейроны, находящиеся в коре головного мозга. У новорожденного количество нейронов больше, чем у взрослого, но несмотря на это, он практически не умеет ни слышать, ни видеть.
Его глаза видят свет, но его мозг этого не понимает, потому что еще не образовались связи с другими нейронами, чтобы информация поступила дальше – в кору больших полушарий. По мере их образования ребенок будет различать сначала свет, затем силуэты, цвета и пр. Чем разнообразнее и ярче будут предметы вокруг него, тем быстрее образуются такие связи и тем лучше будет работать та часть мозга, которая связана со зрением.
Любопытно, что если по какой-то причине (например, из-за травмы или заболевания) ребенок не будет видеть во младенчестве, то в дальнейшем связи между нейронами в его мозге никогда не образуются и он так и не научится видеть. Его глаза будут здоровые, он будет видеть свет, но останется слепым, потому что нейронные связи, обеспечивающие поступление сигнала в мозг, могут образовываться почти всегда только в детстве.
Это же относится и к слуху и, в меньшей мере, к другим способностям: осязанию, обонянию, способности говорить, ориентироваться и др. То есть, очевидно, существует определенный период, когда образуются нейронные связи, необходимые для развития зрения, слуха и пр.
Таким образом, чтобы заставить мозг эффективно работать, его нужно тренировать с самого детства. Чем мозг моложе, тем он восприимчивей. И чем меньше его нагружать, тем хуже он будет работать. Мы все знаем, что если не тренировать мышцы, то они со временем станут дряблыми и начнут атрофироваться. То же касается и мозга: если его перестать нагружать, клетки, отвечающие за мыслительные процессы, начнут отмирать. У людей, которые тренируют свой мозг, ухудшение его работы отмечается лишь в глубокой старости.
2. Не стоит забывать и о питании – мозг нуждается в продуктах, содержащих жирные кислоты Омега-3 (это жирная морская рыба – лосось, семга, скумбрия, грецкие орехи) (см. «Самые полезные продукты для работы мозга»). А вредны для него продукты, в состав которых входят трансжиры (маргарин, чипсы, крекеры, пирожные и т. п.).
3. Для мозга полезны физические нагрузки, ведь при тренировке тела тренируется и мозг. Достаточно получаса один раз в два дня.
4. Чтобы напрягались не только мышцы, но и мозг, его нужно тренировать играми, требующими запоминания, головоломками, кроссвордами и пр.
5. Для мозга необходим полноценный сон – он использует его для обработки воспоминаний и переноса их в долгосрочную память (см. «Что происходит с мозгом, пока мы спим»).
Мы подготовили специально для вас интересный тест, при помощи которого можно определить, хорошая у вас память или нет.
© Тимошенко Елена, BBF.RU