Токсины это что – Что такое токсины и чем они опасны? Очищение организма от токсинов :: SYL.ru

ТОКСИНЫ — это… Что такое ТОКСИНЫ?

токсичные в-ва прир. происхождения. Обычно к Т. относят высокомол. соединения (белки, полипептиды и др.), при попадании к-рых в организм происходит выработка антител. Иногда Т. наз. также низкомол. в-ва (напр., тетродотоксин и др. яды животных), к-рые более правильно относить к прир. ядам.

В зависимости от источника происхождения различают Т. микроорганизмов (напр., ботулинические токсины, другие Т. микроорганизмов), фитотоксины (рицин и другие Т. растений) и зоотоксины (тайпотоксин, бунгаротоксины, пали-токсин и другие Т. животных).

Одним из наиб. важных св-в Т. является их высокая физиол. активность (см. табл.). Из известных Т. наиб. токсичностью обладают Т. бактерий, к-рые в осн. и рассматриваются в этой статье.

Высокая активность Т. бактерий обусловлена их способностью вызывать нарушения мол. механизмов в обменных и др. процессах при действии в организме в низких концентрациях, что связано с высоким сродством к биомишеням. Т. бактерий обладают разл. специфичностью к биомишеням разных органов и тканей. В соответствии с этим различают Т. избират. системного действия и цитотоксичные в-за. К первым относят, напр., нейротропные Т. (ботулинические Т., бунгаротоксины и др.), кардиотропные Т. (палитоксин и др.), миотропные (крототоксин и др.). К щгготоксичным ядам относят Т. с менее выраженной тканевой специфичностью и вызывающие нарушения биохим. процессов, присущих любым клеткам (напр., Т., вырабатываемые возбудителем газовой гангрены clostridium perfringens, разрушают клеточные мембраны и вызывают лизис разл. клеток; рицин и нек-рые другие Т. нарушают синтез белков на рибосомах). В то же время нек-рые Т. обладают достаточно выраженной специфичностью к отдельным тканям (напр., дифтерийный Т. блокирует трансляцию в осн. в нейронах и клетках миокарда).

4120-28.jpg

Механизмы токсич. действия бактериальных Т. различны. Напр., среди нейротоксинов выделяют Т. аксонального, пресинаптич. и постсинаптич. действия. К Т., блокирующим передачу нервного импульса через синапсы, относят, напр., ботулинические Т. и бунгаротоксины. Нек-рые Т.-специфич. ингибиторы определенных ферментов (напр., дифтерийный Т. угнетает активность ферментов, участвующих в трансляции). Нек-рые Т. обладают ферментативной активностью (напр., фосфолипаза, протеаза и др. ферменты, содержащиеся в ядах змей) и разрушают важные метаболиты и структурные элементы разл. клеток.

Среди Т. бактерий различают экзо- и эндотоксины. Первые (напр., ботулинический Т., дифтерийный и столбнячный Т.) представляют собой обычно простые белки и выделяются в окружающую среду во время роста бактерий. Эту группу Т. образуют грамположит. патогенные бактерии.

Эндотоксины (обычно сложные белки) находятся в наружных слоях клеточных стенок патогенных грамотрицат. бактерий, высвобождаются после их гибели и представляют собой продукты их метаболизма.

Для многих Т. бактерий характерна четвертичная структура, в к-рой две субъединицы (домены) соединены дисуль-фидными связями. Субьединицы выполняют разные ф-ции. Как правило, большая по мол. массе субъединица выполняет роль рецептофильного фрагмента молекулы, благодаря чему осуществляется специфич. избират. сорбция Т. на пов-сти клеток (нейронов и др.). После рецепции Т. на пов-сти мембран клетки происходит локальное разрушение ее оболочки и разрыв дисульфидных связей между субъединицами. Затем внутрь клетки проникает меньшая по мол. массе субъединица, к-рая обусловливает токсич. действие.

Проводятся исследования по созданию т. наз. химерных Т. бактерий (их получают методами генетич. инженерии), к-рые содержат в молекуле домены разных токсинов. Таким образом можно получать Т., ранее не существовавшие в природе (напр., Т., содержащие домены токсинов бактерий и фитотоксинов).

Т. применяют в медицине для получения анатоксинов, сохраняющих антигенные св-ва Т. и применяемых для выработки иммунитета против них.

О растит. и животных Т. см. также Яды животных, Яды растений.

Лит.: Далин М. В., Фиш Н. Г., Белковые токсины микробов, М., 1980; The specificity and action of animal, bacterial and plant toxins, ed. by P. Cuatrecasas, v. 1 -3, L., 1976-78; 1Ъе animal, plant and microbial toxins, v. 1 -4, N. Y.-L., 1976-78.

Н. А. Лошадкин.

Химическая энциклопедия. — М.: Советская энциклопедия. Под ред. И. Л. Кнунянца. 1988.

Токсикология — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 января 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 января 2019; проверки требует 1 правка. Токсикологическое исследование

Токсиколо́гия (от греч. τοξικος — яд и λογος — наука, то есть τοξικολογία — наука о ядах) — область медицины, изучающая ядовитые (токсичные) вещества, потенциальную опасность их воздействия на организмы и экосистемы, механизмы токсического действия, а также методы диагностики, профилактики и лечения развивающихся вследствие такого воздействия заболеваний[1][2].

Ведущими задачами в токсикологии является установление токсических доз веществ на различные организмы, прежде всего на человека; раскрытие механизмов действия веществ в токсических дозах, их метаболизма, в том числе исследования генотоксичности ксенобиотиков, определение источников контаминации токсинами различных объектов, токсикологическая оценка новых лекарственных средств, изучение токсикокинетики и токсикодинамики токсинов.

[3]

Теоретическая токсикология[править | править код]

Раздел токсикологии, решающий проблемы выявления основных законов взаимодействия организма и ядов, их токсикокинетики и токсикодинамики[1].

Клиническая токсикология[править | править код]

Раздел токсикологии, исследующий заболевания человека, возникающие вследствие токсического влияния химических соединений с целью научного обоснования методов диагностики, профилактики и терапии отравлений.

Профилактическая токсикология[править | править код]

Раздел токсикологии, изучающий способы предупреждения потенциальной опасности воздействия токсичных веществ на живые организмы и экосистемы.

Экологическая токсикология[править | править код]

Наука, изучающая эффекты воздействия токсичных веществ и токсичных продуктов трансформации прочих веществ на экосистемы и их круговорот в биосфере, их влияние на организмы животных и человека, в особенности в пищевых цепях.

Судебная токсикология[править | править код]

Судебная токсикология — отрасль судебной медицины, изучающая отравления в целях убийства, самоубийства или возникающие в результате несчастных случаев на производстве и в быту.

Военная токсикология[править | править код]

Военная токсикология — направление, связанное с изучением отравляющих веществ, предназначенных или используемых в условиях военных действий. Её основная задача — разработка средств и методов защиты человека от боевых отравляющих веществ (БОВ).

ТОКСИНЫ — это… Что такое ТОКСИНЫ?

  • ТОКСИНЫ — (греч.). Яды, вырабатываемые в живом организме при различн. инфекционных заболеваниях. См. ПТОМАИНЫ. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТОКСИНЫ ядовитые вещества, образующиеся от гниения и вообще… …   Словарь иностранных слов русского языка

  • Токсины — (франц. toxine, от греч. toxikon яд), токсические продукты (полипептиды и белки) обмена веществ, выделяемые ядовитыми растениями, паразитами, патогенными бактериями, скорпионами, некоторыми змеями и др. С экологической точки зрения, токсины… …   Экологический словарь

  • ТОКСИНЫ — ТОКСИНЫ, соединения, выделяемые микроорганизмами, растениями или животными, которые при попадании в другой организм могут вызывать его заболевание или гибель. Содержатся в ядах змей, пауков, скорпионов и др. Бактериальные токсины вызывают… …   Современная энциклопедия

  • ТОКСИНЫ — соединения (часто белковой природы) бактериального, растительного или животного происхождения, способные при попадании в организм животных или человека вызывать заболевание или их гибель. Содержатся в ядах змей, пауков, скорпионов. Бактериальные… …   Большой Энциклопедический словарь

  • токсины — а, м. toxine <гр. toxikon яд. биол., мед. Ядовитое вещество, вырабатываемое некоторыми микроорганизмами, а также некоторыми видами животных и растений. БАС 1. Постепенным введением в организм лошади возрастающих доз ядовитого начала (токсина) …   Исторический словарь галлицизмов русского языка

  • Токсины — ТОКСИНЫ, соединения, выделяемые микроорганизмами, растениями или животными, которые при попадании в другой организм могут вызывать его заболевание или гибель. Содержатся в ядах змей, пауков, скорпионов и др. Бактериальные токсины вызывают… …   Иллюстрированный энциклопедический словарь

  • ТОКСИНЫ — ТОКСИНЫ, ов, ед. ин, а, муж. (спец.). Ядовитые вещества, образуемые микроорганизмами, а также выделяемые нек рыми животными и растениями. | прил. токсический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • ТОКСИНЫ — (от греч. toxikon яд), ядовитые вещества, образуемые нек рыми микроорганизмами, растениями н животными. По химич. природе полипептиды и белки. Иногда термин «Т.» распространяется и на ядовитые вещества небелковой природы (в частности афлатоксины… …   Биологический энциклопедический словарь

  • токсины — ядовитые вещества, образуемые живыми организмами, в том числе и микроорганизмами. По хим. природе – полипептиды. Исключение составляют афлатоксины, являющиеся производными кумаринов. Обладают антигенными свойствами. Среди микробных Т. различают… …   Словарь микробиологии

  • Токсины — вещества белковой природы бактериального, животного или растительного происхождения, обладающие подобно ОВ поражающим действием на организм человека и животных. Могут использоваться в качестве основы химического оружия. EdwART. Словарь терминов… …   Словарь черезвычайных ситуаций

  • ТОКСИНЫ — это… Что такое ТОКСИНЫ?

  • ТОКСИНЫ — (греч.). Яды, вырабатываемые в живом организме при различн. инфекционных заболеваниях. См. ПТОМАИНЫ. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТОКСИНЫ ядовитые вещества, образующиеся от гниения и вообще… …   Словарь иностранных слов русского языка

  • Токсины — (франц. toxine, от греч. toxikon яд), токсические продукты (полипептиды и белки) обмена веществ, выделяемые ядовитыми растениями, паразитами, патогенными бактериями, скорпионами, некоторыми змеями и др. С экологической точки зрения, токсины… …   Экологический словарь

  • ТОКСИНЫ — ТОКСИНЫ, соединения, выделяемые микроорганизмами, растениями или животными, которые при попадании в другой организм могут вызывать его заболевание или гибель. Содержатся в ядах змей, пауков, скорпионов и др. Бактериальные токсины вызывают… …   Современная энциклопедия

  • ТОКСИНЫ — соединения (часто белковой природы) бактериального, растительного или животного происхождения, способные при попадании в организм животных или человека вызывать заболевание или их гибель. Содержатся в ядах змей, пауков, скорпионов. Бактериальные… …   Большой Энциклопедический словарь

  • токсины

    — а, м. toxine <гр. toxikon яд. биол., мед. Ядовитое вещество, вырабатываемое некоторыми микроорганизмами, а также некоторыми видами животных и растений. БАС 1. Постепенным введением в организм лошади возрастающих доз ядовитого начала (токсина) …   Исторический словарь галлицизмов русского языка

  • ТОКСИНЫ — ТОКСИНЫ. Понятие «токсин» вошло в иммунобиологию в конце 19 в., когда были обнаружены у животных и растений, а также у бактерий вещества, обладающие следующими основными свойствами: 1) При введении в организм животного вызывают… …   Большая медицинская энциклопедия

  • Токсины — ТОКСИНЫ, соединения, выделяемые микроорганизмами, растениями или животными, которые при попадании в другой организм могут вызывать его заболевание или гибель. Содержатся в ядах змей, пауков, скорпионов и др. Бактериальные токсины вызывают… …   Иллюстрированный энциклопедический словарь

  • ТОКСИНЫ — ТОКСИНЫ, ов, ед. ин, а, муж. (спец.). Ядовитые вещества, образуемые микроорганизмами, а также выделяемые нек рыми животными и растениями. | прил. токсический, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • токсины — ядовитые вещества, образуемые живыми организмами, в том числе и микроорганизмами. По хим. природе – полипептиды. Исключение составляют афлатоксины, являющиеся производными кумаринов. Обладают антигенными свойствами. Среди микробных Т. различают… …   Словарь микробиологии

  • Токсины — вещества белковой природы бактериального, животного или растительного происхождения, обладающие подобно ОВ поражающим действием на организм человека и животных. Могут использоваться в качестве основы химического оружия. EdwART. Словарь терминов… …   Словарь черезвычайных ситуаций

  • Токсины — это… Что такое Токсины?

            вещества бактериального, растительного или животного происхождения, способные угнетать физиологические функции, что приводит к заболеванию или гибели животных и человека. По химической природе все Т. — белки или полипептиды. В отличие от др. органических и неорганических ядовитых веществ, Т. при попадании в организм вызывают образование антител (См. Антитела). (Молекулярная масса Т. свыше 4—5 тыс.; низкомолекулярные вещества не иммуногенны.) Т. входят в состав ядов змей, скорпионов, пауков и др. ядовитых животных (См. Ядовитые животные), ряда ядовитых растений (См. Ядовитые растения).          Наиболее распространённые и изученные бактериальные Т. (их известно несколько сотен) подразделяются на экзотоксины и эндотоксины. Экзотоксины выделяются бактериями в процессе их жизнедеятельности в окружающую среду и обладают специфическим действием на организм (к таким Т. относятся нейротоксины, цитотоксины). Некоторые микроорганизмы выделяют очень сильные Т., вызывающие Ботулизм, Столбняк, дифтерию (См. Дифтерия), пищевые токсикоинфекции и др. Эндотоксины высвобождаются после гибели бактерий и представляют собой нормальные продукты их метаболизма (например, ферменты). Такие Т. нарушают у животных и человека обмен аминов биогенных (См. Амины биогенные). Действие эндотоксинов не специфично. Т. бактерий были открыты в 1888 французским учёным Э. Ру и швейцарским учёным А. Йерсеном, получившими Т. дифтерийной палочки. Этим открытием они создали предпосылки для разработки методов обезвреживания Т., а не уничтожения продуцирующих их микроорганизмов. Успешная попытка применения антитоксинов (См. Антитоксины) (антител) была предпринята немецким бактериологом Э. Берингом в 1890, установившим, что сыворотка крови животных, иммунизированных сублетальными дозами Т., обладает профилактическими и лечебными свойствами. В 1924 французский учёный Г. Рамон предложил обезвреживать Т. (с сохранением их иммунных свойств) обработкой формалином, в результате чего образуется неядовитое производное Т. — Анатоксин, который при введении в организм способствует выработке Иммунитета к соответствующему Т. В конце 50-х гг. 20 в. с развитием химии белков и методов их очистки и идентификации появилась возможность не только избирательно химически модифицировать Т., но и отделять полученные анатоксины от не прореагировавших исходных Т.          Т. различают и по типу действия на организм. Нейротоксины действуют на различные этапы передачи нервного импульса. Так, некоторые бактериальные Т. нарушают проводимость нервных волокон. Тайпотоксин и β-бунгаротоксин действуют на пресинаптическую мембрану (см. Синапсы), подавляя выделение медиатора ацетилхолина. Кобротоксин и др. Т. этого класса (их известно несколько десятков; для 30 из них установлена аминокислотная последовательность) блокируют ацетилхолиновый рецептор постсинаптической мембраны. Цитотоксины обладают высокой поверхностной активностью и разрушают биологические мембраны. Такие Т. часто встречаются в ядах змей; по химическому строению они близки нейротоксинам змей, но отличаются от них функционально важными аминокислотами. Цитотоксины могут вызывать лизис (разрушение) клеток крови. Т.-ингибиторы подавляют активность определённых ферментов и нарушают таким образом процессы обмена веществ (см. Ингибиторы). Т.-ферменты (протеазы, нуклеазы, гиалуронидазы, фосфолипазы и др.) разрушают (гидролизуют) важные компоненты организма — белки, нуклеиновые кислоты, полисахариды, липиды и др.

             Применение Т. ограничено получением из них анатоксинов; нейротоксины используют в качестве избирательно действующих агентов при электрофизиологических и клинических исследованиях механизмов передачи возбуждения в нервной системе.

             Часто термин «Т.» неправильно распространяют на природные небелковые вещества, нарушающие те или иные функции организма.

             Важнейшие токсины

            ————————————————————————————————————————————————————————————————

            |                                                  |                                                   |                          | Дозы, вызывающие гибель 50%          |

            | Название токсина                      | Источник                                    | Молекулярная    | подопытных животных                        |

            |                                                  |                                                   | масса                |————————————————————|

            |                                                  |                                                   |                          мг/кг               ммоль/кг                     |

            |————————————————————————————————————————————————————————————————|

            | Ботулинический токсин А          | Палочка ботулизма                     | 150000               | 2,6 × 10-8        | 1,7 × 10-13                   |

            |————————————————————————————————————————————————————————————————|

            | Ботулинический токсин Б          | Палочка ботулизма                     | 167000               | 1,0 × 10-8        | 0,6 × 10-13                   |

            |————————————————————————————————————————————————————————————————|

            | Тетанический токсин                 | Палочка столбняка                      | 140000               | 2,8 × 10-8        | 2,0 × 10-13                   |

            |————————————————————————————————————————————————————————————————|

            | Рицин                                        | Семена клещевины                     | 65000                 | 2,8 × 10-3        | 4,3 × 10-8                    |

            |————————————————————————————————————————————————————————————————|

            | Тайпоксин                                 | Яд австралийского тайпана         | 42000                 | 2,0 × 10-3        | 4,8 × 10-8                    |

            |————————————————————————————————————————————————————————————————|

            | β-бунгаротоксин                        | Яд крайта                                   | 28500                 | 2,5 × 10-2        | 8,8 × 10-7                    |

            |————————————————————————————————————————————————————————————————|

            | Кобротоксин                              | Яд кобры                                    | 6782                  | 5,0 × 10-2        | 7,4 × 10-6                    |

            |————————————————————————————————————————————————————————————————|

            | Токсин II                                    | Яд скорпиона                              | 7249                  | 0,9 × 10-2        | 1,2 × 10-6                    |

            ————————————————————————————————————————————————————————————————

            

             Лит.: Токсины-анатоксины и антитоксические сыворотки, М., 1966; Яды пчел и змей в биологии и медицине. Сб. ст., Горький, 1967; Venomous and poisonous animals and noxious plants of the Pacific region, Oxf., 1963; Venomous animals and their venoms, v. 1—3, N. Y.—L., 1968—71; Microbial toxins. A comprehensive treatise, v. I — Bacterial protein toxins, N. Y., 1970; Karlss on Е., Chemistry of some potent animal toxins, «Experientia», 1973, v. 29, № 11, p. 1319—27; Ziotkin F., Chemistry of animal venoms, там же, № 12, p. 1453—66.

             Е. Я. Демьягикин.

    Эндотоксины — Википедия

    Эндотоксины — бактериальные токсические вещества, которые представляют собой структурные компоненты определённых бактерий и высвобождаются только при лизисе (распаде) бактериальной клетки. Это отличает эндотоксины от экзотоксинов, растворимых соединений, секретируемых живой бактериальной клеткой.

    Основным примером эндотоксинов является липополисахарид или липоолигосахарид. Липополисахарид грам-отрицательных бактерий настолько глубоко исследован и настолько широко применяется как эндотоксин, что часто термины эндотоксин и липополисахарид используются как синонимы.

    Строение бактериальных эндотоксинов[править | править код]

    Бактериальные эндотоксины состоят из полисахаридного и липидного фрагментов. Полисахаридный фрагмент содержит О-специфическую цепь (O-антиген), включающую повторяющуюся последовательность олигосахаридных единиц на основе гликозильных остатков (до 50), а также ядро. Липид А и внутреннее ядро полисахаридной составляющей эндотоксинов частично фосфорилированы. Это приводит к тому, что в растворах с нейтральным или основным рН эндотоксины будут иметь выраженный отрицательный заряд (рКа 1,3).

    Молекулярная масса мономеров различных липополисахаридов может варьировать в достаточно широких диапазонах, что объясняется вариабельностью О-специфической цепи. Известны эндотоксины с молекулярными массами от 2,5 кДа (с укороченной О-специфической цепью) до 70 кДа (с очень длинной О-специфической цепью). Большая же часть липополисахаридов имеет молекулярную массу от 10 до 20 кДа.

    Однако необходимо отметить, что мономерные липополисахариды могут образовывать супрамолекулярные структуры за счёт неполярных взаимодействий между липидными «хвостами», а также за счёт образования «сшивок» фосфатных групп бивалентными катионами. Таким образом в водных растворах эндотоксины могут агрегировать в ламелярные, кубические или инвертированные гексагональные структуры, такие как мицеллы или везикулы. Диаметр подобных структур достигает 0,1 мкм, а молекулярная масса – 1000 кДа. Бивалентные катионы, такие как Ca2+ и Mg2+, способствуют образованию супрамолекулярных структур, а детергенты, ЭДТА и белки, наоборот, смещают равновесие в сторону образования мономерных форм.

    О-антиген[править | править код]

    О-специфическая цепь уникальна для каждого прокариотического штамма; она вносит существенный вклад в серологическую специфичность, вызывая иммунный ответ в организмах человека и животных.

    Ядро[править | править код]

    Основными составляющими ядра являются остатки гептозы (гексапиранозы во внешней части ядра и L-глицеро-D-манногептозы во внутренней части), а также группы 2-кето-3-деоксиоктоновой кислоты.

    Липид A[править | править код]

    Липидный фрагмент эндотоксинов или липид А является наименее вариабельной и наиболее консервативной частью. Липид А отвечает за эндотоксическую активность. Она проявляется в стимулировании производства и высвобождения гранулоцитами и макрофагами эндогенных медиаторов, таких как биоактивные липиды, NO, цитокины (например, интерлейкин-1). Большие концентрации таких медиаторов в организме могут привести к множеству различных патофизиологических реакций, как-то повышение температуры тела, лейкопения, тахикардия, гипотония, рассеянная внутрисосудистая коагуляция и т.д.[1]

    Схема распознавания липополисахарида (LPS) иммунными клетками и передача сигнала, вызывающего иммунный ответ.

    Наличие гликолипида в молекуле различных по происхождению эндотоксинов определяет общность их биологических свойств. Физиологические концентрации эндотоксин колеблются в весьма широком диапазоне (от близкой к нулю до 1,0 EU/ml) и имеют неуклонную тенденцию к увеличению с возрастом. В физиологических условиях 5-7% циркулирующих лейкоцитов несут на своей поверхности ЛПС. Рецепторный комплекс CD14/TLR4/MD2, присутствующий на макрофагах и многих других клетках организма, связывает ЛПС.
    Исход реакции ЛПС с клетками макроорганизма зависит от его концентрации. Умеренная активация клеток и систем при низких дозах эндотоксина с увеличением дозы переходит в гиперактивацию, которая сопровождается усиленной продукцией воспалительных цитокинов, усиленной активацией системы комплемента и факторов свертывания крови, что может заканчиваться развитием таких грозных осложнений, как диссеминированное внутрисосудистое свертывание (ДВС), эндотоксиновый шок и острая полиорганная недостаточность.[2] При избыточном поступлении в системный кровоток эндотоксина в условиях относительной недостаточности ЛПС-связывающих факторов, а также при недостаточности ЛПС выделяющих систем (в первую очередь почек) эндотоксин может проявлять свои многочисленные патогенные свойства. Факт участия избытка ЛПС в патогенезе различных заболеваний, назван «эндотоксиновой агрессией». Причины развития эндотоксиновой агрессии очень разнообразны: наиболее частая — стресс, а также любые патологические процессы, приводящие к повышению проницаемости кишечного барьера (пищевые отравления и острые кишечные инфекции, алкогольный эксцесс и дисбактериоз, непривычно жирная и острая пища, острые вирусные инфекции, шок и др.), портальная гипертензия и заболевания печени, хроническая и острая почечная недостаточность (поскольку именно почки служат основным ЛПС-выводящим органом).[3][4]
    Доступным и безопасным методом нормализации уровня эндотоксина в крови является энтеросорбция. Энтеросорбент в кишечнике связывает эндотоксин и снижает его поступление через энтерогематический барьер. [5][6]

    Примером иных, нежели липополисахарид, эндотоксинов может служить инсектицидный дельта-токсин грам-положительной Bacillus thuringiensis. Этот токсин является белком, который синтезируется бациллой при спорообразовании и образует кристаллы в бактериальной споре. При поедании растения с такими спорами личинками насекомых протеолиз этого белка приводит к образованию специфического белкового продукта, который встраивается в мембрану эпителиальных клеток кишечника личинки и образует катионный канал, вызывая лизис клеток и смерть. Дельта-токсин безвреден для человека, так как для проявления цитотоксичности требует специфической активации.

    Наличие эндотоксинов в крови называется эндотоксинемией. При сильном иммунном ответе эндотоксинемия может привести к септическому шоку.

    • Helmut Brade. Endotoxin in Health and Disease. — New York-Basel: Marcel Dekker, 1999. — 962 с. — ISBN 0824719441.

    ТОКСИНЫ — Большая Медицинская Энциклопедия

    ТОКСИНЫ (греч. toxikon яд) — вырабатываемые микроорганизмами, растениями и животными биологически активные вещества, общим свойством к-рых является способность нарушать гомеостаз у определенных групп прокариотов или эукариотов; Т. имеют большое значение в патогенезе инф. болезней. Они используются для создания профилактических и лечебных препаратов, а также как средство для изучения биологических процессов на молекулярном уровне. К Т. относятся различные хим. соединения: производные нуклеотидов, полипептиды, простые и сложные белки, обладающие в ряде случаев ферментативной активностью, вещества стероидной природы и комплексные соединения (липополисахариды и др.).

    Примером токсинов, представляющих производные нуклеотидов (см. Нуклеиновые кислоты), является бета-экзотоксин — один из энтомопа-тогенных токсинов Bacillus thuringiensis, производное дезоксиаденозина с мол. весом (массой) 730. Токсинами полипептидной природы с мол. весом от 4 до 10 тыс. являются термостабильные энтеротоксины Escherichia coli, Yersinia enterocolitica и нек-рых других энтеробактерий. Белковые Т. (см. Белки) широко распространены в природе, к ним в частности относятся килерные (летальные) Т., вырабатываемые грибками родов Saccharomyces, Cryptococcus, Тоrulopsis, Pichia, способные оказывать летальное действие на герминативные формы других дрожжеподобных грибков. Простыми белками являются и нек-рые Т. растительного происхождения (такие, напр., как модецин, рицин, абрин, вырабатываемые соответственно растениями Aden ia digitata, Abrus precator ius и Ricinus communis), Т. змей (нейротоксины Najahaje, Bunga-rus caeruleus, геморрагический яд Vipera lebetina), скорпионов, книдарий и других ядовитых для человека животных, энтомопатогенные Т. бактерий Bacillus alvei, Вас. thuringiensis и нек-рых видов псевдомонад, а также Т. большинства микроорганизмов, патогенных для человека и животных. К Т. стероидной природы относятся афлатоксины (см.), вырабатываемые грибками рода Aspergillus (A. flavus, A. parasiticus, A. ochraceus и др.), охра-токсины, продуцентами к-рых являются Aspergillus ochraceus, Peni-cillium viridie и нек-рые другие виды грибков (см. Микотоксикозы). Типичным представителем Т. комплексной природы является лп-иополисахаридный комплекс клеточной стенки грамотрицательных бактерий, в состав к-рого, кроме полисахарида и липида А, входит и нек-рое количество термостабильных полипептидов, сохраняющих функциональную активность и после прогревания при t°80—100° (см. Липополисахариды).

    Основным критерием при отнесении того или иного вещества к Т. служит его способность нарушать гомеостаз (см.) какого-либо организма, выступающего в качестве тест-объекта при оценке поражающего действия изучаемого соединения.

    Результатом действия Т. может быть гибель организма или резкое изменение его функций, необходимых для нормальной жизнедеятельности (подвижность, способность к таксисам у простейших и низкоразвитых организмов, нормальный метаморфоз у насекомых, нарушения в системе свертывающих белков гемолимфы у членистоногих, дисбаланс водно-солевого обмена, нарушения в терморегуляции и в фибринолизе у млекопитающих и птиц и др.). Так, напр., о свойствах килерных Т. сахаромицет и криптококков судят по их способности снижать количество жизнеспособных особей в интенсивно размножающейся популяции дрожжей или же дрожжеподобных грибков. Летальное действие абрина определяют по результатам внутривенного введения его кроликам. Паралитический эффект яда кобры оценивают при подкожном введении мышам и в опытах обездвиживания инфузории Paramecium caudatum. Пирогенное действие стафилококкового экзотоксина серотипа С или липополисахаридного комплекса клеточной стенки Salmonella typhimurium выявляют при внутривенном введении их кроликам по последующему изменению ректальной температуры. Способность липополисахаридного комплекса влиять на функциональную активность системы свертывающих белков крови или гемолимфы определяют как in vivo, моделируя внутрисосудистый микротромбоз у лаб. животных, так и in vitro — в тесте желирования лизата амебоцитов краба Limulus. Присущее холерогену Vibrio cholerae свойство нарушать водно-солевой обмен в организме может быть оценено как in vivo (на новорожденных крольчатах), так и in vitro (на перевиваемых культурах овариальных клеток хомячков).

    Биол. модели не только позволяют отнести то или иное природное соединение к разряду Т., но и помогают выяснить природу реакций, обусловливающих интоксикацию (см.). На биол. моделировании основаны и пробы, используемые для выявления Т. в биол. продуктах, равно как и методы изучения биол. субстратов на наличие в них Т. Однако биологические пробы часто не дают возможности получить ответ в сжатые сроки, поэтому при экспресс-диагностике интоксикации поиск Т. в биологических пробах осуществляют с помощью химических или же иммунохимических индикаторов. Хим. индикаторы (см.) широко применяют при выявлении афлатоксинов, охратоксинов, липополисахаридного комплекса в тестах хемилюминесценции (см. Флюоресценция), тонкослойной и высокоскоростной жидкостной хроматографии (см.), а иммунохимические индикаторы — при обнаружении различных Т., способных как в чистом виде, так и в конъюгированном состоянии индуцировать выработку антител у кроликов и других лаб. животных. В качестве иммунохимических индикаторов используют такие высокочувствительные тесты, как реакция пассивной гемагглютинации (см. Гемагглютинация), реакция энзим-меченных антител (см. Энзимиммунологический метод) и Др.

    Т., образуемые животными (зоотоксины) и растениями (см. Ядовитые животные, Ядовитые растения), в патологии человека играют меньшую роль, чем Т. микроорганизмов. Описано и выделено в относительно чистом виде более 80 токсинов микроорганизмов, действие к-рых на клетку осуществляется четырьмя основными способами: воздействие на мембрану (оболочку) клетки, прямое повреждающее действие на внутренние компоненты клетки, модификация функциональной активности клетки, влияние на процесс взаимодействия клеток между собой и с межклеточным веществом. В соответствии с характером функциональной активности все известные микробные Т. можно разделить на 5 основных типов: мембранотоксины, цитотоксины, функциональные блокаторы, эксфолиатины — эритрогенины, модуляторы реакций клеток на эндогенные медиаторы.

    К мембранотоксинам относятся три группы веществ, способных лизировать мембраны клеток эукариотов (см. Эукариотные организмы): лейкоцидины (см.), гемолизины (см. Гемолиз) и токсины с фосфатидазной активностью. В свою очередь, гемолизины подразделяются на три подгруппы — устойчивые к действию кислорода, разрушающиеся под действием кислорода и прочие (гемолизины, не меняющие своих свойств в зависимости от наличия кислорода).

    Цитотоксины (см.) включают три группы токсических веществ, способных блокировать процессы жизнедеятельности в клетках эукариот и вызывать их гибель: антиэлонгаторы, дермонекротизины (некротоксины) и цитотоксины с энтеротропной активностью. Группу антиэлонгаторов составляют цитотоксины, способные блокировать синтез белка на этапе удлинения полипептидной цепи, группу дермонекротизинов — Т., вызывающие некроз определенных клеточных элементов, а к группе цитотоксинов с энтеротропной активностью относят Т., разрушающие клетки кишечного эпителия.

    Функциональные блокаторы представлены энтеротоксинами (см.), нейротоксинами и собственно ток-синами-блокаторами, напр, токсином Yersinia pestis, летальным для мышей.

    Эксфолиатины-эритрогенины включают две группы Т.— эксфолиатины стафилококка и эритрогенины стрептококка, причем эритрогенинам стрептококка присуще и пирогенное действие.

    К модуляторам реакций клеток на эндогенные медиаторы относятся Т., не обладающие прямым поражающим действием, но извращающие реакцию клеток на нек-рые эндогенные медиаторы (гистамин, митозстимулирующий фактор и др.).

    По своему происхождению Т. микроорганизмов подразделяют на три основные класса: экзотоксины — продукты, выделяемые микроорганизмами в среду в процессе своей жизнедеятельности, эндотоксины — продукты, прочно связанные со стромой микробных клеток и переходящие в культуральный фильтрат только после гибели микробной популяции, мезотоксины — токсические вещества, непрочно связанные со стромой микробной клетки и в определенных условиях диффундирующие в окружающую среду при сохранении у клеток-продуцентов их исходной жизнеспособности.

    Ориентируясь на два основных признака того или иного микробного Т.— его происхождение и характер функциональной активности, можно проводить детальную внутригрупповую дифференцировку Т. Напр., лейкоцидин Staphylococcus aureus состоит из двух компонентов — F и S с мол. весом 32 000 и 38 000 соответственно, к-рые в этом качестве довольно близки к лейкоцидину Pseudomonas aeruginosa, молекулярный вес к-рого 27 000. Оба сравниваемых лейкоцидина термолабильны и после 10— 30 мин. прогревания при t° 56—60° инактивируются; оба они лизируют лейкоциты, но не действуют на эритроциты. Стафилококковый лейкоцидин не обладает летальной активностью, а лейкоцидин Ps. aeruginosa при внутривенном введении мышам в дозе 4—8 мкг вызывает их гибель, что обусловлено его принадлежностью к эндотоксинам, характеризующимся токсичностью высокой степени.

    Цитотоксин Shigella dysenteriae имеет мол. вес ок. 72 000 и состоит из двух основных субъединиц с мол. весом 32 000, 29 000 и дополнительных субъединиц с мол. весом 4000 и 7000, локализация к-рых точно не установлена. Этот Т. относительно термостабилен и выдерживает прогревание при t° 60° в течение 10 мин. без утраты токсической активности; прогревание при той же температуре в течение 30 мин. снижает его токсичность не более чем на 20— 25%. Токсин летален для мышей при внутрибрюшинном введении, а синтез его бактериями резко блокируется при увеличении концентрации железа в среде культивирования с 0,1 до 1,0 мкг]мл. Его поражающее действие объясняют способностью тормозить перенос аминокислот с транспортной РНК на растущую полипептидную цепь, поэтому он отнесен в группу так наз. антиэлонгаторов. В эту же группу входит и гистотоксин A Ps. aeruginosa. Мол. вес этого токсина ок. 72 000, состоит он из субъединиц с мол. весом 45 000 и 27 000. Гистотоксин А полностью инактивируется после 60 мин. прогревания при t° 70°, а интенсивность его синтеза штаммом-продуцентом находится в прямой зависимости от содержания железа в среде выращивания. Поражающее действие гистотоксина А объясняют его инактивирующим действием на второй фактор элонгации, синтезируемой на рибосомах полипептидной цепи — трансферазу II.

    Т. из группы антиэлонгаторов — гистотоксин Corynebacterium diphtheriae с мол. весом 63 000 также состоит из субъединиц с мол. весом 24 000 и 39 000. Синтез этого белка штаммом-продуцентом также находится в прямой зависимости от содержания железа в питательной среде, а накапливающийся в фильтрате токсический белок термолабилен и после 30 мин. прогревания при t°60° полностью утрачивает свою ядовитость. Поражающее действие дифтерийного гистотокспна также объясняется его способностью инактивировать трансферазу II и блокировать таким образом перенос аминокислот с транспортной РНК на рибосомную матрицу.

    Перечисленные свойства Т. группы антиэлонгаторов свидетельствуют о сходстве разных по происхождению Т. с практически одинаковым молекулярным строением, отличающихся чувствительностью к прогреванию и деталями механизма интоксикации клеток эукариотов (мыши относительно резистентны к действию гистотокспна Cor. diph-theriae по сравнению с цитотоксином Sh. dysenteriae и гистотоксином А Ps. aeruginosa). Однако описанные выше Т. в двух случаях (токсины Ps. aeruginosa и Cor. diphtheriae) представляют собой истинные экзотоксины (экзопротеины), а дизентерийный цитотоксин является типичным эндотоксином, поэтому можно полагать, что эти различия детерминированы в ходе эволюции.

    В том же случае, когда микробные Т. одного типа и группы имеют одинаковое происхождение, сходство их наиболее полное. В качестве примера можно привести сравнительную характеристику гемолизинов, чувствительных к действию кислорода. Известно несколько таких токсинов — О-стрептоли-зин пневмолизин, листериолизин, тетанолизин, Θ-токсин Clostridium perfringens серотипов (сероваров) А и С, гемолизин Clostridium histo-lyticum, а-токсин Clostridium novyi типа А и гемолизины Clostridium botulinum серотипов С и D, альвеолизин, тюрингиолизин, цереолизин,— причем все они являются экзотоксинами (экзопротеинами). Мол. вес этих Т. варьирует в пределах 47 000— 69 000, а удельная гемолитическая активность в отношении эритроцитов барана, кролика или лошади достигает 2 х 106 — 4 X 106 HU (международных гемолитических единиц) на 1 мг белка. Они термолабильны и инактивируются после кратковременного прогревания при t° 56—70°, все они обладают серологическим родством и теряют литическую активность после пре-инкубации с холестерином. Последнее свойство особенно важно, поскольку, очевидно, все они фиксируются на оболочках эритроцитов в тех участках мембраны, где холестерин каким-то образом участвует в построении поверхностного рецептора.

    Сходство Т. выявляется при сравнительном анализе термолабильных энтеротоксинов бактерий. Известно 6 энтеротоксинов, являющихся экзопротеннами (холероген Vibrio cholerae, энтеротоксины Vibrio parahaemolyticus, Aeromonas hyd-rophila, Salmonella typhimurium, Shigella dysenteriae, Bacillus ce-reus) и 2 энтеротоксина из класса мезотоксинов (энтеротоксины Е. coli, Salmonella enteritidis), причем все эти соединения (за исключением энтеротоксина S. enteritidis, молекулярный вес к-рого 120 000) имеют молекулярный вес ок. 80 000, часто встречающееся серо л. родство, выраженную в той или иной степени термолабильность и способность терять токсическую активность (при тестировании на овариальных клетках) после преинкубации с ганглиозидом GM

    Перечисленные и другие подобные примеры (сходство в строении и свойствах у термолабильных энтеротоксинов, цитотоксинов с энтеро-тропной активностью и др.) позволяют полагать, что при эволюции разные виды патогенных микроорганизмов приобретали в процессе естественного отбора способность синтезировать однотипные по строению полипептиды, белки или же комплексные соединения. Эти соединения способны при попадании во внутреннюю среду каких-либо других организмов имитировать сигналы естественных регуляторов гомеостаза. Однако такая имитация лишь частично воспроизводит обычный ход регуляторного процесса, а на каких-то более отдаленных этапах блокирует его.

    Такая трактовка механизма действия микробных Т. подтверждается рядом наблюдений о сходстве в строении нек-рых токсинов и гормонов. Так, напр., участки полипептидных цепей холерогена Vibrio cholerae и термолабильного энтеротоксина E. coli, ответственные за связь с рецепторами восприимчивых клеток, имеют структурное сходство с аналогичными участками полипептидных цепей тиреотропина, хорионического гонадотропина и лютеинпзирующего гормона.

    Существует и другой вариант имитации сигналов регуляторов гомеостаза. Стафилококковый альфа-лизин фиксируется на тех участках рецепторов восприимчивых клеток, в состав к-рых входит лецитин и (или) фосфатидилхолин. Очевидно, эти же фосфолипиды входят и в состав тех рецепторов, к-рые задействованы при трансмембранном переносе в клетку нек-рых ферментов, в частности, таких как малатдегидрогеназа. Рецептором для другого стафилококкового токсина — альфа-лизина является еще одно соединение из группы ганглиозидов — Nan-gal-gle-N Ас-ганглиозид, выступающий как составная часть рецептора, обеспечивающего фиксацию на клеточной поверхности нек-рых эндогенных и экзогенных митогенов. А для дизентерийного цитотоксина в роли рецептора выступает та структура клеточной мембраны, в состав к-рой входит Х-ацетил-D-глюкозамин — основной компонент дисахарида, составляющее групповое вещество А крови человека.

    После того, как в результате имитации сигналов регуляторов гомеостаза произошла ассоциация клетки с микробным Т., он трансмембранно или же путем пиноцитоза (см.) пенетрирует в цитозоль, где и проявляет свое токсическое действие. Гистотоксин A Ps. aeruginosa и дифтерийный гистотоксин реализуют, напр., свою ферментативную потенцию, катализируя реакцию между никотинамидаденин — динуклеотидом и трансферазой II. В итоге этой реакции формируется комплексное соединение — аденозин-дифосфат-рибозил-трансфераза II, не способное принять участие в переносе аминокислот с транспортных РНК на рибосомную матрицу. Таким же образом реализуют свое токсическое действие растительные яды абрин и рицин, вырабатываемые Abrus precatorius и Ricinus communis.

    У холерогена V. cholerae, термолабильного энтеротоксина E. coli и других подобных им по функции Т. после пенетрации в цитозоль срабатывает потенциальная способность активировать аденилатциклазу.

    В свою очередь, это индуцирует резкое накопление в клетке циклического аденозинмонофосфата, активацию протеинкиназ, встроенных в клеточные мембраны, и как следствие — изменение проницаемости мембран (см. Мембраны биологические) для ионов, воды и органических веществ.

    У токсина Yersinia pestis, летального для мышей, фиксирующегося на поверхности восприимчивых клеток путем ассоциации с бета-адренорецептором, конечной точкой приложения после пенетрации в цитозоль также оказывается аденилатциклаза, но в отличие от холерогена чумной Т., летальный для мышей, инактивирует аденилатциклазу и выводит клетку из-под контроля такими факторами гомеостаза, как эпинефрин, глюкагон и др.

    Реакции на молекулярном уровне, лежащие в основе процессов интоксикации (см.) и приводящие к необратимым изменениям во внутренней среде организма, подвергшегося действию Т., хорошо объясняют причины частичных неудач серотерапии (см.) подобных состояний. Еще со времен Э. Беринга и Э. Ру известно, что антитоксические сыворотки (см.) успешно купируют интоксикацию микробными Т. только тогда, когда они введены на ранних стадиях заболевания или же в начальном периоде токсинемии (фаза интоксикации, во время к-рой токсин циркулирует в крови и лимфе). Введение антитоксина (см.) в более поздний период или малоэффективно, или совсем не оказывает леч. действия. Современные данные о молекулярных механизмах интоксикации позволяют с исчерпывающей полнотой истолковать это противоречие.

    Специфический антитоксин может нейтрализовать микробный Т. при циркуляции последнего и воспрепятствовать его фиксации на рецепторах восприимчивых клеток. Возможна также нейтрализация фиксированных на клетках молекул Т., когда специфическое антитело препятствует диссоциации исходной токсической молекулы (протоксина) на субъединицы и пенетрации в цитозоль фрагментов, несущих токсофорные детерминанты. Если же такая пенетрация совершилась, антитела оказываются отгороженными клеточными мембранами от проникших в цитозоль токсических факторов и возникает ситуация, когда серотерапия бессильна против интоксикации. Поэтому основные усилия в течение последних 50 лет были направлены на создание средств профилактики токсинемий. При массовой иммунизации (см.) контингентов населения атоксичными дериватами токсинов — анатоксинами (см.) удается предотвратить интоксикацию.

    Для обезвреживания Т. обычно используют способ Рамона — формольную детоксикацию. Предложен также ряд новых приемов получения обезвреженных дериватов микробных Т. для специфической профилактики. В частности, для создания противохолерного антитоксического иммунитета у людей рекомендуют применять per os препарат из субъединиц полипептидной цепи холерогена, ответственных за его фиксацию на клеточных рецепторах, содержащих ганглиозид GMi. Аналогичный по свойствам препарат из субъединиц тетаноспазмина Clostridium tetani апробирован в Ин-те Пастера в Париже в качестве иммуногена для профилактики столбнячной интоксикации. В том же ин-те разработан синтетический иммуноген для профилактики дифтерийной интоксикации, представляющий собой конъюгат из адъювантного мурамилдипептида и олигопептида, формирующего токсофорный центр молекулы дифтерийного гистотоксина. Однако при использовании как традиционного способа Рамона, так и современных методик в качестве сырья для приготовления анатоксинов всегда выступает микробный Т.

    В СССР и за рубежом налажено производство ряда микробных Т., которые используются при получении препаратов для прививок, применяемых в медицине и ветеринарии.

    Производятся нек-рые микробные энтомопатогенные Т., предназначенные для защиты с.-х. растений. С мед. точки зрения замена пестицидов (см.) в сельском хозяйстве на энтомопатогенные токсины целесообразна, поскольку они в отличие от пестицидов не кумулируются в организме человека и животных и не оказывают на них отрицательного воздействия.

    По сведениям зарубежной печати в последние годы начата разработка противоопухолевых препаратов, активным началом к-рых являются противоопухолевые антитела, гибридизованные с нек-рыми микробными токсинами (дифтерийный гистотоксин, синегнойный экзотоксин А и др.), способными блокировать синтез белка в опухолевых клетках.


    Библиогр.: Далин М. В. и Фиш Н. Г. Белковые токсины микробов, М., 1980, библиогр.; Карпухин Г. И., Шапиро Н. И. и Андриевская Р. А. Химические вакцины для профилактики кишечных инфекций, Л., 1979; Проказова Н. В. Рецепторная роль глико-ефинголипидов клеточной поверхности, в кн.: Усп. биол. хим., под ред. Б. Н. Степаненко и др., т. 23, с. 40, М., 1982; Талызин Ф. Ф. и Шутова В. С. О действии ядов змей на Paramaecium caudatum, в кн.: Эксперим. паразитол. и биол., под ред. А. И. Осиповского и П. И. Щукина, с. 18, М., 1965; Янопольская Н. Д. и Деборин Г. А. Проницаемость биологических и модельных мембран для белков, в кн.: Усп. биол. хим., под ред. Б. Н. Степаненко и др., т. 23, с. 24, М., 1982; Antibody carriers of drugs and toxins in tumor therapy, Immunol. Rev., v. 62, 1982; Audibert F. a. o. Active antitoxic immunization by a diphtheria toxin synthetic oligopeptide Nature (Lond.), v. 289, p. 593, 1981; B j o r n M. J. a. o. Effect of iron on yields of exotoxin A in cultures of Pseudomonas aeruginosa PA-103, Infect. Immun., v. 19, p. 785, 1978: Gill D. M. Bacterial toxins, a table of lethal amounts, Microbiol. Rev., v. 46, p. 86, 1982; S v e n-nerholm A. M. a.o. Intestinal antibody responses after immunization with cholera В subunit, Lancet, v. 1, p. 305, 1982; Svennerholm L. Structure and biology of cell membrane gangliosides, в кн.: Cholera and related diarrheas, ed. by J. Holmgren, p. 80, Basel a. o., 1980.


    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *