Устойчивость к антибиотикам бактерий – Устойчивость микроорганизмов к антибиотикам — это… Что такое Устойчивость микроорганизмов к антибиотикам?

Содержание

Резистентность микрорганизмов к антибиотикам

 

Под резистентностью микроорганизмов к антибактериальным средствам понимают сохранение их способности к размножению в присутствии  таких концентраций этих веществ, которые создаются  при введении терапевтических доз.

 

Еще в начале развития химиотерапии при изучении действия трипанового синего на трипаносомы П. Эрлих замечал появление резистентных форм микроорганизмов к данному красителю. По мере расширения арсенала химиопрепаратов увеличивалось число сообщений о таких наблюдениях. Так, после начала ши­рокого применения сульфаниламидных препаратов было отмече­но появление многочисленных штаммов бактерий, которые легко выдерживали терапевтические концентрации данных препаратов.

Антибиотикорезистентные бактерии возникли и стали распро­страняться сразу после внедрения антибиотиков в клиническую практику. Как тревожный сигнал прозвучали сообщения о появлении   и   распространении   пенициллинорезистентных   стафилококков. В настоящее время повсеместно возрастает число лекар­ственно-устойчивых форм бактерий. Так, частота обнаружения пенициллиноустойчивых стафилококков доходит до 90—98 %, стрептомициноустойчивых — 60—70 % и выше, резистентность шигелл к ампициллину достигает 90 % и более, к тетрациклину и стрептомицину — 54 % и т. д. Устойчивость к антибиотикам чаще возникает у бактерий, реже у других микроорганизмов (спирохет, риккетсий, хламидий, микоплазм, дрожжеподобных грибов).

 

Механизмы резистентности микроорганизмов к антибиотикам и другим химиотерапевтическим препаратам сложны и разнооб­разны. Главным образом они связаны со следующими причи­нами:

1) превращением активной формы антибиотика в неактив­ную форму путем ферментативной инактивации и модификации;

2) утратой проницаемости клеточной стенки для определенного химиотерапевтического препарата;

3) нарушениями в системе специфического транспорта данного препарата в бактериальную клетку;

4) возникновением у микроорганизмов альтернативного пути образования жизненно важного метаболита, заменяющего основной путь, блокированный препаратом.

 

Типы устойчивости бактерий к антибиотикам

Механизмы резистентности могут быть подразделены на пер­вичные и приобретенные.

К первичным механизмам относятся те, которые связаны с отсутствием «мишени» для действия данного препара­та; к   приобретенным — изменением «мишени» в результате модификаций, мутаций, рекомбинаций. В первом случае речь идет о естественной (видовой) резистентности, например у микоплазм к пенициллину из-за отсутствия у них клеточной стенки. Однако чаще всего резистентность к химиотерапевтическим препаратам, в том числе антибиотикам, приобретается микробными клетками с генами резистентности (г-гены), которые они получают в процессе своей жизнедеятельности от других клеток данной или соседней популяции. При этом наиболее эффективно и с высокой частотой r-гены передаются плазмидами и транспозонами (см. 6.2). Один транспозон передает резистент­ность только к одному препарату. Плазмиды могут нести не­сколько транспозонов, контролирующих резистентность к разным химиотерапевтическим препаратам, в результате чего формиру­ется множественная резистентность бактерий к различным препаратам.

Устойчивость к антибиотикам бактерий, грибов и простейших также возникает в результате мутаций в хромосомных генах, контролирующих образование структурных и химических компо­нентов клетки, являющихся «мишенью» для действия препарата. Так, например, резистентность дрожжеподобных грибов родаCandida к нистатину и леворину может быть связана с мутацион­ными изменениями цитоплазматическои мембраны.

Биохимические механизмы резистентности бактерий к бета-лактамным антибиотикам разнообразны. Они могут быть связаны с индуцибельным синтезом бета-лактамазы, изменениями в пенициллиносвязывающих белках и других «мишенях». Описано око­ло 10 пенициллиносвязывающих белков — ферментов, участвую­щих в синтезе бактериальной клеточной стенки. Кроме того, ре­зистентность к ампициллину и карбенициллину можно объяснить снижением проницаемости наружной мембраны грамотрицательных бактерий. Развитие того или другого типа резистент­ности определяется химической структурой антибиотика и свойст­вами бактерий. У одного и того же вида бактерий могут сущест­вовать несколько механизмов резистентности.

Механизм быстрого развития резистентности к новым цефалоспоринам, устойчивым к действию цефалоспориназ, зависит от образования комплекса антибиотика с индуцибельными латамазами, При этом гидролиза антибиотика не происходит. Такой ме­ханизм обнаружен у протеев.

Биохимические механизмы приобретенной резистентности к аминогликозидным антибиотикам и левомицетину связаны со способностью бактерий образовывать ферменты (ацетилтрансферазу, аденилтрансферазу, фосфотрансферазу), которые вызыва­ют соответственно ацетилирование, аденилирование или фосфорилирование данных антибиотиков. Устойчивость к тетрациклину обусловлена главным образом специфическим подавлением тран­спорта данного антибиотика в бактериальные клетки и т. д.

Таким образом, происходит образование отдельных резистент­ных особей в бактериальной популяции. Их количество крайне незначительно. Так, одна мутировавшая клетка (спонтанная му­тация), устойчивая к какому-либо химиотерапевтическому препа­рату, приходится на 10

5—109 интактных (чувствительных) кле­ток. Передача г-генов с плазмидами и транспозонами повышает число резистентных особей в популяции на несколько порядков. Однако общее число лекарственно-резистентных бактерий в попу­ляции остается весьма низким.

Формирование лекарственно-устойчивых бактериальных попу­ляций происходит путем селекции. При этом в качестве селек­тивного фактора выступает только соответствующий химиотерапевтический препарат, селективное действие которого состоит в подавлении размножения огромного большинства чувствитель­ных к нему бактерий.

Массовой селекции и распространению антибиотикорезистентных бактериальных популяций способствуют многие факторы. Например, бесконтрольное и нерациональное применение анти­биотиков для лечения и особенно для профилактики различных инфекционных заболеваний без достаточных к тому оснований, а также использование пищевых продуктов (мясо домашних птиц и др.), содержащих антибиотики (тетрациклин), и другие фак­торы.

 

Первый тип — природная устойчивость , которая определяется  свойствами данного вида или рода микроорганизмов.      (Устойчивость    грамотрицательных   бактерий к  бензилпенициллину, бактерий — к противогрибковым, грибов — к антибактериальным препаратам).

Второй тип — приобретенная устойчивость.

Она может быть первичной и вторичной.

Термин “приобретенная устойчивость ” применяют в случаях, когда в чувствительной к  данному  препарату  популяции  микроорганизмов  находят резистентные варианты.  Она возникает, в основном, в результате мутаций, которые происходят в геноме клетки.

Первичная устойчивость  (как результат мутации) оказывается  в отдельных клетках популяции через ее гетерогенность до начала лечения антибиотиками.

Вторичная устойчивость  формируется также за счет мутаций может расти  при контакте бактерий с антибиотиками. Мутации ненаправлены и не связаны  с действием антибиотиков. Последние играют лишь роль селекционирующих агентов.  Они елиминують чувствительные особи популяции и, соответственно, начинают преобладать резистентные клетки.

В зависимости от скорости возникновения мутантов приобретенная вторичная устойчивость бывает два типов:  стрептомициного     и      пеницилинового.

Стрептомициновий тип возникает как “одноступенчатая мутация“, когда быстро происходит образование мутантов с высокой устойчивостью после одно-двукратного контакта микроба с антибиотиком. Степень ее не зависит от концентрации препарата (стрептомицина, рифампицина, новобиоцина). 

Пенициллиновий тип резистентности формируется  постепенно, путем “многоступенчатых мутаций”. Селекция стойких вариантов при этом происходит медленно (пеницилин, ванкомицин, левомицетин, полимиксин, циклосерин)

 

Резистентность микробов к антибиотикам обеспечивается генами, которые локализуются или в хромосоме, или в составе внехромосомних элементов наследственности (транспозоны, плазмиды).

 

Хромосомные мутации — самая частая причина изменения рецептора, мишени, с которой взаимодействуют лекарства. Так, белок Р10 на 30s субъединице бактериальной рибосомы является рецептором для прикрепления стрептомицина. У бактерий, устойчивых к действию эритромицина, может повреждаться сайт на50s субединице рибосомы в результате метилирования 23s рРНК.

 

R-плазмиды могут содержать от одного до десяти и больше разных генов лекарственной резистентности, которая делает микроба нечувствительным к подавляющему большинству антиибиотикив, которые используются в клинике. Некоторые из них (конъюгативные, трансмиссивные) способны передаваться от одного бактериального штамма к другому не только в пределах одного вида, но и часто разных видов и даже родов микробов. Кроме конъюгации возможна передача детерминант устойчивости  с помощью трансдукции (у стафилококков), а также трансформации.

 

Устойчивость микробов к антибиотикам – глобальная проблема человечества

В конце апреля 2019 года ООН опубликовала поворотный по своей значимости отчет о масштабах и последствиях одной из глобальных проблем человечества – развития у опасных инфекций устойчивости (резистентности) к лекарствам, в том числе к антибиотикам. 700 тысяч человек ежегодно умирает из-за инфекций, вызванных микробами, которые стали невосприимчивыми к действию лекарственных препаратов. По прогнозам ученых, через 10 лет жертвами антибиотикорезистентности каждый год будут более 10 млн человек.

В этой статье старший научный сотрудник ФГБУ «ВГНКИ» Дмитрий Макаров рассказывает о причинах и масштабах проблемы и дает рекомендации, как избежать заражения опасными устойчивыми инфекциями.

Что такое антибиотикорезистентность?

Антибиотикорезистентность – это способность микробов противостоять действию антимикробных средств, в том числе антибиотиков. С 2000-х годов Всемирная организация здравоохранения называет антибиотикорезистентность одной из самых серьезных угроз для здоровья животных и человека.

Каждый год в мире более 700 тысяч человек умирает от инфекций, вызванных устойчивыми микробами.

Для других пациентов удлиняется время госпитализации. Известный британский экономист профессор лорд Джим О’Нил прогнозирует, что через 30 лет от устойчивых микробов будет умирать уже 10 миллионов человек в год. Экономический ущерб исчисляется миллиардами долларов. Колоссальный урон наносится и отрасли животноводства.

При этом масштаб проблемы в мире неуклонно растет. В начале этого года в медицинском журнале The Lancet опубликована статья; авторы оценили, что урон для жизни и здоровья населения Европы от устойчивых инфекций с 2007 по 2015 год удвоился. Воспаление легких, дизентерия, сепсис, туберкулез, малярия – это всего лишь несколько болезней, при лечении которых врачи сталкиваются с устойчивостью возбудителей к антибиотикам.

Обнаруживают все больше патогенных бактерий с устойчивостью сразу к нескольким группам антибиотиков и даже так называемых ПАНРЕЗИСТЕНТНЫХ, т.е. устойчивых ко всем используемым против них препаратам. Если раньше такие бактерии находили только в больницах, то сейчас их находят даже в продуктах питания.

Как микробы становятся устойчивыми к антибиотикам?

Антибиотикорезистентность возникла и развивалась еще ДО открытия антибиотиков человеком.

Миллиарды лет бактерии вырабатывали вещества для борьбы с другими бактериями – антибиотики. Другие микроорганизмы, в свою очередь, приобретали механизмы защиты от таких соединений. Таким образом, антибиотикорезистентность – это древнее явление.

Она всегда определяется генами и передается из поколения в поколение. Ученые нашли такие гены даже в арктической вечной мерзлоте возрастом 30 тысяч лет и в образцах кишечной микрофлоры Тирольского человека. Это найденная в Альпах мумия возрастом более 5 тысяч лет. И сейчас в окружающей среде и у диких животных устойчивые бактерии и гены устойчивости встречаются повсеместно.

Микробы становятся устойчивыми к антибиотикам либо в результате случайного изменения генов – мутаций, либо в результате передачи генов устойчивости от другого микроба, который уже обладает этим свойством. Даже если устойчивость приобрели безобидные бактерии, населяющие кишечник животных или человека, или свободные бактерии в окружающей среде – эти гены могут передаться оказавшимся рядом болезнетворным бактериям.

Если на группу бактерий (популяцию) в организме человека, животного или в окружающей среде воздействует антимикробное средство, в такой популяции выживают только устойчивые бактерии. Выиграв конкурентную борьбу, они размножаются, распространяются и передают свои гены дальше. Это явление под названием «селективное давление» и определяет опасность использования антибиотиков.

Когда впервые появилась проблема?

На момент внедрения антибиотиков в практику устойчивость к ним бактерий была редким явлением. Это привело к беспрецедентному прорыву в медицине.

Однако специалисты уже тогда понимали, что долго такое благоденствие не продлится. Еще сэр Александр Флеминг, первооткрыватель пенициллина, первого антибиотика, в лекции по случаю вручения ему Нобелевской премии в 1945 году предупреждал об опасности приобретения патогенными бактериями устойчивости к пенициллину.

С учетом масштабов применения антибиотиков в животноводстве и медицине, рост и распространение устойчивости были всего лишь вопросом времени. Довольно долго ущерб от резистентности сдерживался открытием новых антибиотиков. Но если в период «антибиотикового бума» середины ХХ века в год ученые открывали десятки новых препаратов, то с начала XXI века медицина получила всего два новейших класса антибактериальных препаратов.

Применение антибиотиков в медицине и животноводстве

У проблемы антибиотикорезистентности есть две стороны: медицинская и ветеринарная. Конечно, основная проблема для здравоохранения – это применение антибиотиков в медицине, в особенности неправильное: например, назначения в отсутствие показаний, безрецептурная продажа и самолечение, изобилие контрафактных и некачественных антибиотиков.

Распространению резистентности способствует и то, что в развивающихся странах значительно возросла доступность препаратов для населения, а также все более активное перемещение по миру людей, животных, обмен продуктами питания и другими товарами, а с ними – и устойчивыми микроорганизмами.

Но и сельское хозяйство играет немаловажную роль в процессе развития и распространения резистентности.

На животноводство приходится приблизительно ¾ производимых в мире объемов антибактериальных средств. При этом большинство классов антимикробных средств – общие для медицины и ветеринарии. В сельском хозяйстве их используют для профилактики и лечения инфекций животных и даже в качестве стимуляторов роста.

Да-да, никто точно не знает как, но небольшое количество антибиотиков, добавляемое в корм скоту, действительно способствует увеличению привесов. Однако самая большая опасность для здоровья населения как раз и скрывается в таком постоянном использовании малых доз антибиотиков.

В хозяйствах появляются и распространяются устойчивые бактерии. Среди них есть и зоонозные, то есть те, которые могут вызывать заболевания как животных, так и человека.

Сальмонеллез, кампилобактериоз, колибактериоз, йерсиниоз… Эти инфекционные заболевания чаще всего характеризуются тошнотой, рвотой, диареей и сильными болями в течение нескольких дней. Намного опаснее зоонозные инфекции для людей с ослабленным иммунитетом, детей и пожилых, а некоторые штаммы вируса могут привести к летальному исходу. В тяжелых случаях для лечения необходимы антибиотики, поэтому заражение устойчивыми бактериями особенно опасно.

Возникающие в хозяйствах устойчивые бактерии заражают людей тремя основными способами:

– Через продукцию животноводства. Часто причиной заражения является плохо прожаренный фарш, сырые куриные яйца и молоко, но источниками заразы могут быть даже овощи с фруктами.

– Через контакт с зараженными животными – в зоне риска в первую очередь работники животноводческих предприятий.

– Через воду, почву и другие компоненты окружающей среды, животных-переносчиков, таких как насекомые, грызуны.

Вклад в проблему вносят, вероятно, и остатки антибиотиков в продуктах питания животного происхождения, способствуя селекции устойчивых бактерий в организме потребителей.

Бывает и так, что антибиотик снижает эффективность в медицине исключительно из-за его применения в животноводстве. Хороший пример – колистин. Долгое время этот препарат против кишечной палочки почти не применяли в медицине из-за тяжелых побочных эффектов, но его активно использовали в качестве стимулятора роста для скота. Однако, несмотря на побочные эффекты, препарат недавно был отнесен к резервным антибиотикам для людей, то есть таким, которые применяют, когда ничего другое уже не помогает.

В Китае несколько лет назад колистин в медицине не использовали совсем, но неожиданно в госпиталях одного города врачи обнаружили устойчивую к нему кишечную палочку. Сравнив гены бактерий из больниц и с окрестных ферм, ученые выяснили: устойчивая к колистину кишечная палочка появилась на фермах и была занесена в больницы на лапках мух.

 

В результате в Китае запретили добавлять колистин в корм скоту для увеличения привесов.

Что мировое сообщество предпринимает для решения проблемы

Стратегия борьбы с устойчивостью к антибиотикам сегодня есть во многих странах, в том числе в сфере животноводства. Здесь им помогают организации, такие как Всемирная организация здравоохранения (ВОЗ) и Всемирная организация здравоохранения животных (МЭБ), которые разрабатывают стратегии борьбы и полезные рекомендации.

Основа таких мер, конечно же, – это ограничение применения антибиотиков за счет разумного и рационального их использования. Многочисленные научные исследования показали, что снижение применения антибиотиков ведет и к снижению распространения устойчивых бактерий.

В сфере животноводства ключевые пункты стратегий – это ограничения использования важных для медицины препаратов, таких как уже упоминавшийся колистин, ципрофлоксацин, цефалоспорины последних поколений, которые следует использовать только в том случае, если ничего другого животному уже не поможет, но никак не для профилактики или стимуляции роста.

Другой важный пункт – соблюдение правил санитарии, которое предотвращает занос инфекций.

Хорошее подспорье в профилактике и борьбе – это средства, альтернативные действию антибиотиков: вакцины, бактериофаги, пробиотики, эфирные масла растений и так далее.

Важно и обучение ветеринарных врачей грамотному назначению антимикробных препаратов.

Лидеры по снижению использования антибиотиков в животноводстве – страны Европы: Нидерланды, Дания, Норвегия, Франция, Бельгия, Германия и другие. Работают над этим и страны Азии, например Япония и Таиланд. США больше рассчитывают на открытие новых антибиотиков.

Россией уже принята собственная Стратегия противодействия антибиотикорезистентности, составленная в соответствии с международными принципами. Исследования в рамках этой стратегии проводит в том числе наш институт – подведомственный Россельхознадзору Всероссийский государственный Центр качества и стандартизации лекарственных средств для животных и кормов. Мы проводим научную работу, в которой изучаем устойчивость зоонозных бактерий ко всем группам антибиотиков. Бактерий – сальмонелл, кампилобактера, кишечную палочку, энтерококков – мы выделяем из продуктов питания животного происхождения и получаем от разных видов животных (коров, свиней и даже оленей) и птицы.

Как же снизить риск заражения устойчивыми бактериями?

Необходим помнить, что один из основных путей заражения – пищевой. Чтобы обезопасить себя от пищевых инфекций, необходимо соблюдать несколько несложных правил, сформулированных ВОЗ:

  • Подвергайте пищу тщательной термической обработке. Температура продукта должна быть минимум 70 °С.
  • Съедайте приготовленную пищу горячей, поскольку при остывании велика вероятность размножения в ней различного рода бактерий. Если разогреваете пищу, то делайте это при той же температуре – не ниже 70 °С.
  • Храните пищу при температуре не выше 10 °С.
  • Не допускайте контакта сырой и приготовленной пищи. Например, не стоит резать ножом сырое мясо, а потом сразу сыр.
  • Мойте руки перед приготовлением еды. Тщательно мойте фрукты и овощи.
  • Держите кухню и все кухонные принадлежности в чистоте, не допускайте появления насекомых и тем более мышей и крыс.
  • Помните, что опасные бактерии могут попасть в пищу от собак, кошек, птиц и других домашних животных. Соблюдайте простые правила гигиены и следите за здоровьем ваших питомцев.

Дмитрий Макаров, Анастасия Мазнева

Женщину в США убила бактерия, устойчивая ко всем антибиотикам / Habr


Группа резистентных энтеробактерий. Фото: Центр контроля и предотвращения заболеваний США

До изобретения антибиотиков было обычным делом, что люди не доживали до 30 лет, умирая от инфекционных заболеваний. Если не изобретать новые антибиотики, то эти времена могут вернуться.

Специалисты знают, что в результате естественного отбора посредством случайных мутаций у микроорганизмов вырабатывается устойчивость к отдельным антибиотикам. Микробы способны переносить генетическую информацию об устойчивости к антибиотикам путём горизонтального переноса генов. Это прямая демонстрация эволюции в живой природе, когда живое существо изменяет свои характеристики, чтобы стать полностью устойчивым к вредным условиям внешней среды. В данном случае вредные условия внешней среды — это деятельность человека. Учёные считают, что резистентность к антимикробным препаратам проявляется в результате постепенного накопления мутаций со временем, хотя она может возникнуть и в результате целенаправленного изменения генома возбудителя заболевания.

Каковы бы ни были причины появления резистентности к антибиотикам, такие организмы представляют собой большую угрозу для жизни людей. Эти микробы очень трудно убить. Самое мрачное в том, что устойчивые к антибиотикам микробы со временем могут размножаться — и количество смертей будет расти. По пессимистичному прогнозу медиков, к 2050 году такие бактерии будут убивать по 10 млн человек в год по всему миру. В ближайшие десятилетия эти «супербактерии» могут стать одной из главных причин смертности на Земле, опередив раковые заболевания, смерть в ДТП (1,2 млн человек в год) и, конечно же, все войны и теракты вместе взятые.

По оценкам врачей, сейчас частично устойчивые к антибиотикам микробы убивают ежегодно около 700 тыс. человек в год. Но практически во всех случаях можно было подобрать эффективный препарат. Очень редко встречаются микробы, устойчивые абсолютно ко всем антибиотикам. Всегда остаётся вероятность, что на самом деле пациента можно было спасти — может быть врачи неправильно применили противомикробный препарат или антибиотик, не успели подобрать нужное лекарство.

Один из наиболее изученных случаев с доказанной смертью пациента от резистентного микроба задокументирован в научной статье, которая несколько дней назад опубликована в американском медицинском журнале Morbidity and Mortality Weekly Report (MMWR).

18 августа 2016 года инфицированная женщина поступила в больницу американского города Рено (штата Невада) с предварительным диагнозом «синдром системного воспалительного ответа», предположительно из-за заражения через серому на правом бедре.

19 августа 2016 года анализ образца, взятого из района инфекции, определил наличие бактерии Klebsiella pneumoniae — палочки Фридлендера. Эта грамотрицательная факультативно-анаэробная палочковидная бактерия является одним из распространённых возбудителей пневмонии, а также некоторых других инфекционных заболеваний. Женщину поместили на карантин в изолированное помещение. 25 августа 2016 года в местный центр контроля и предотвращения заболеваний поступило сообщение о пациенте с инфекцией, которая устойчива ко всем известным антибиотикам.

Изучение истории болезни показало, что пациент возрастом более 70 лет в начале августа вернулась после продолжительного путешествия по Индии. В течение двух лет до этого её неоднократно госпитализировали в Индии в связи с переломом правого бедра, последующим остиомиелитом, последний раз — в июне 2016-го.

У пациента развился септический шок, смерть наступила в сентябре 2016 года.

Тестирование на антибиотикорезистивность показало, что образец бактерии устойчив к 26 антибиотикам, включая все аминогликозиды и полимксины, и частично устойчив к тигециклину — специальному виду антибиотика, разработанному для борьбы с резистентными микробами. Во время тестирования проверили колистин и фостомицин. Тесты показали чувствительность возбудителя к фосфомицину при относительно низкой ингибирующей концентрации. К сожалению, фосфомицин разрешён в США только к пероральному применению при лечении неосложнённого цистита, хотя в других странах возможно его введение внутривенно. Все разрешённые для использования в США препараты были бессильны против данного патогена.

Особенно примечательно отсутствие реакции на колистин. Бактерия становится устойчивой к этому препарату при наличии у неё гена mcr-1. В последнее время учёные отмечают, что из-за использования колистина на свиных фермах в Китае бактерии выработали резистивность к этому антибиотику, и теперь ген mcr-1 встречается в геноме большого количества микробов.

Специалисты центра контроля и предотвращения заболеваний отмечают, что постоянно отслеживают случаи проявления резистентных бактерий, но обнаружение микробов, которые устойчивы абсолютно ко всем антибиотикам, встречается крайне редко. Среди более 250 случаев, которые были проанализированы за всё время наблюдений, более 80% образцов были предположительно уязвимы для хотя бы одного вида аминогликозидов, а 90% — для тигециклина.

Центр контроля и предотвращения заболеваний предупреждает о необходимости принятия соответствующих мер карантина в случае обнаружения таких бактерий, чтобы не допустить распространения инфекции. Дополнительные меры безопасности следует принять в отношении пациентов, которые недавно приехали из Индии или других регионов, в которых известно существование микроорганизмов, устойчивых к антибиотикам.

Проблема очень серьёзная. Очень трудно будет бороться с инфекционным заболеванием, если возбудитель устойчив ко всем известным противомикробным препаратам. «Я думаю, это вызывает тревогу. Мы так долго полагались на всё новые и новые антибиотики. Но очевидно, что микробы могут часто выработать устойчивость быстрее, чем мы произведём новые препараты», — говорит Александр Каллен (Alexander Kallen), сотрудник регионального центра контроля и предотвращения заболеваний.

Ситуация осложняется тем, что процедура тестирования новых антибиотиков занимает очень длительное время, а некоторые фармацевтические компании вовсе отказались от разработки новых препаратов. Например, фармацевтическая компания Cempra Pharmaceuticals не получила одобрения FDA на свой новый антибиотик из-за возможных побочных эффектов на печень. Фармацевтическая компания Paratek Pharmaceuticals уже около 21 года ждёт одобрения своего нового антибиотика омадициклин (omadacycline), его испытания продолжаются.

Медицинский отчёт опубликован 13 января 2017 года в журнале Morbidity and Mortality Weekly Report (doi:10.15585/mmwr.mm6601a7).

Бактерии устойчивые к антибиотикам – список и особенности

Опубликован список из 12 бактерий, устойчивых к действию большинства антибиотиков

В конце февраля 2017 г. Всемирная организация здравоохранения впервые опубликовала список бактерий с уже выработанной или растущей устойчивостью к действию большинства антибиотиков. Задача публикации — стимулировать на государственном уровне поиск новых лекарственных препаратов против перечисленных возбудителей, «представляющих наибольшую угрозу для здоровья человека». Включенные в список бактерии разделены на три группы по приоритетности в плане поиска новых антибиотиков.

Критически высокий уровень приоритетности

  1. Acinetobacter baumannii
  2. Pseudomonas aeruginosa
  3. Enterobacteriaceae

Рейтинг бактерий, устойчивых к антибиотикам, заслуженно возглавляют грамотрицательные микроорганизмы — возбудители большинства нозокомиальных (внутрибольничных) инфекций в отделениях реанимации и интенсивной терапии, гнойной хирургии и онкологии. Вызывают инфекции кожи и мягких тканей, ЖКТ, мочевыводящих путей, раневые, эндокардит, менингит, остеомиелит. У ослабленных пациентов особое значение имеют инфекции кровотока и ИВЛ-ассоциированная пневмония. Для бактерий этой группы практически не осталось антибиотиков резерва.

Acinetobacter baumannii

«Природное» местообитание A. baumannii не установлено, однако этих бактерий обнаруживают в стационарах по всему миру. Вызывает до 1 % всех нозокомиальных инфекций, с уровнем смертности от 8 до 35 %. A. baumannii резистентна к пенициллинам, цефалоспоринам, аминогликозидам, хинолонам и тетрациклину. Отмечено значительное увеличение резистентности к карбапенемам — более 50 % в отдельных странах. Выявлены случаи резистентности к «последнему резерву» антибактериальной терапии, полимиксинам, ранее широко не использовавшимся из‑за высокой нефротоксичности.

В терапии карбапенем-резистентной A. baumannii относительно эффективны комбинации антибиотиков: полимиксин Е + рифампицин/карбапенемы/хинолоны/цефепим/ампициллин-сульбактам/пиперациллин-тазобактам.

Pseudomonas aeruginosa

Синегнойная палочка распространена повсеместно, встречается в почве и воде, на/в растениях, животных, людях. Вызывает до 20 % нозокомиальных инфекций. Чувствительность к антибактериальной терапии очень сильно варьирует. В тяжелых случаях отмечается развитие резистентности к ранее высокоэффективным цефалоспоринам, фторхинолонам, карбапенемам, аминогликозидам, азтреонаму, пиперациллину-тазобактаму. Сохраняется чувствительность к полимиксину Е, а также комбинациям антибиотиков.

Смертность при развитии инфекций, вызванных мультирезистентной P. aeruginosa, варьирует от 5 до 50 %, в зависимости от состояния пациента и локализации процесса.

Enterobacteriaceae

Из большого семейства энтеробактерий основные проблемы в стационарах доставляют Klebsiella, Escherichia coli, Citrobacter, Salmonella, Enterobacter, Serratia, Proteus. Вызывает опасения растущее повсеместное снижение чувствительности семейства к карбапенемам. Описаны единичные случаи резистентности E. coli ко всем существующим антибиотикам, включая полимиксин Е.

Высокий уровень приоритетности

  1. Enterococcus faecium
  2. Staphylococcus aureus
  3. Helicobacter pylori
  4. Campylobacter spp.
  5. Salmonellae
  6. Neisseria gonorrhoeae

Бактерии второй группы объединены по признаку повсеместного распространения, высокой социально-экономической значимости вызываемых ими заболеваний и быстрого развития резистентности к основным антибиотикам, используемым для их эрадикации, однако в резерве еще остается один или несколько эффективных препаратов.

Enterococcus faecium

E. faecium входит в состав нормальной микрофлоры кишечника, но в то же время является условно-патогенным микроорганизмом. У ослабленных больных может вызывать инфекции мочевыводящих путей, раневую инфекцию, сепсис и эндокардит. Резистентен к аминогликозидам, пенициллинам и цефалоспоринам. Беспокойство вызывает снижение чувствительности к ванкомицину — до 72 % в отдельных популяциях. Большинство штаммов E. faecium чувствительны к линезолиду, тигециклину, даптомицину.

Staphylococcus aureus

Золотистый стафилококк, колонизирующий кожу и слизистые оболочки, способен вызывать тяжелые инфекции кожи и мягких тканей, респираторные, раневые инфекции, остеомиелит, сепсис, артрит, эндокардит. Недавнее появление и распространение ванкомицин- и гликопептид-резистентных штаммов в дополнение метициллин-резистентному S. aureus значительно сужает выбор антибактериальных препаратов, однако у возбудителя сохраняется чувствительность к аминогликозидам, эритромицину, тетрациклину, ко-тримоксазолу, линезолиду.

Helicobacter pylori

Тревогу ВОЗ вызывает увеличение случаев резистентности всем известной H. pylori к кларитромицину, что сказывается на эффективности традиционных схем эрадикационной терапии, в том числе и в России. Перед эрадикацией ВОЗ рекомендует проверить чувствительность бактерии к этому антибиотику, при выявлении устойчивости — использовать схемы без него — с метронидазолом, тетрациклином или рифаксимином, а также добавлять висмута трикалия дицитрат.

Campylobacter spp.

Бактерии рода Campylobacter удерживают первое место в мире по гастроэнтеритам, которые у большинства населения планеты протекают в легкой форме, но представляют опасность для маленьких детей, беременных, стариков и иммунокомпрометированных больных. В большинстве случаев достаточно регидратации и восстановления электролитного баланса, антибактериальную терапию назначают при тяжелом течении. Проблемой является резистентность Campylobacter к фторхинолонам, основному средству борьбы с кишечной микрофлорой, и макролидам. Устойчивость к этим препаратам, впрочем, сильно варьирует от страны к стране — от менее 5 % в Финляндии до более 90 % в Индии. В Европе и России эритромицин всё еще остается препаратом выбора. По данным микробилогических исследований, в России также еще вполне актуальны фторхинолоны. В запасе для особо тяжелых случаев с осложнениями — гентамицин и карбапенемы.

Salmonellae

Представители рода сальмонелл также вызывают набор кишечных инфекций, от легкого энтерита до брюшного тифа. Большинство этих бактерий уже резистентны к бета-лактамам, аминогликозидам, тетрациклинам, хлорамфениколу и ко-тримоксазолу. Устойчивость к фторхинолонам растет во всем мире, но пока не привела к полной бесполезности этих препаратов, они остаются антибиотиками выбора, наравне с макролидами и цефалоспоринами третьего поколения. Антибактериальной терапии требуют только тяжелые случаи кишечных инфекций и, конечно, брюшной тиф и паратифы.

Neisseria gonorrhoeae

Гонорея из неприятной, но относительно легко излечимой болезни эволюционировала в глобальную медицинскую проблему. Гонококк потерял чувствительность к пенициллинам, тетрациклинам, сульфаниламидам и фторхинолонам.

Особое опасение вызывает появление и постепенное распространение штаммов, резистентных к цефалоспоринам (цефтриаксону), долгое время служивших безотказным средством борьбы с этой инфекцией. При резистентной к стандартным схемам лечения гонорее рекомендовано использовать комбинацию азитромицина с высокими дозами цефтриаксона. В России гонококк также практически резистентен к фторхинолонам, но пока сохраняет 100 %-ную чувствительность к цефтриаксону.

Средний уровень приоритетности

  1. Streptococcus pneumoniae
  2. Haemophilus influenzae
  3. Shigella spp.

Третью группу также представляют широко распространенные бактерии, чья устойчивость к «обычным» антибиотикам пока не приняла угрожающих масштабов, однако чревата большими проблемами в будущем.

Streptococcus pneumoniae

Пневмококки — одни из основных возбудителей инфекций ЛОР-органов, внебольничной пневмонии, менингита. Резистентны к тетрациклину и ко-тримоксазолу. В мире постепенно снижается чувствительность S. pneumoniae к бета-лактамам и макролидам, однако, как и в других случаях, доля резистентных штаммов сильно варьирует от страны к стране. В России большинство штаммов пневмококков, к счастью, всё еще чувствительны к пенициллинам и макролидам, также эффективны хлорамфеникол, рифампицин, левофлоксацин, ванкомицин.

Haemophilus influenzae

Гемофильная инфекция у детей младшего возраста протекает в виде бактериемии, гнойного менингита, пневмонии, целлюлита и эпиглоттита, у взрослых — в основном в виде пневмонии. Тревогу ВОЗ вызывает развитие полной резистентности гемофильной палочки к ранее эффективному ампициллину, в результате чего от него пришлось повсеместно отказаться. В России эффективны амоксициллин, цефалоспорины и макролиды, однако рекомендуется проводить бактериологический анализ с оценкой резистентности.

Shigella spp.

Возбудители дизентерии практически не чувствительны к ампициллину. Как и прочие энтеробактерии, они также постепенно вырабатывают устойчивость к фторхинолонам, которые тем не менее всё еще остаются препаратами выбора. В качестве альтернативы — цефалоспорины III поколения, ко-тримоксазол.

Итого

Появление устойчивых к антибиотикам бактерий и публикация этого списка в очередной раз привлекают внимание человечества к необходимости создания — в идеале — принципиально новых средств борьбы с микроорганизмами, иначе, по пессимистичным прогнозам, из-за появления бактерий, устойчивых к антибиотикам, через несколько десятилетий одна только послеоперационная летальность может скатиться до уровня начала прошлого века. Разработка таких препаратов — занятие неблагодарное, поэтому фармацевтические компании не стремятся развивать данное направление, и ВОЗ выносит проблему на межгосударственный уровень.

Проблема лекарственной устойчивости среди возбудителей нозокомиальных инфекций — первые пять бактерий списка — актуальна и для российского здравоохранения. Остальные перечисленные микроорганизмы, по данным российских исследований, на территории РФ в целом сохраняют чувствительность к «своим» антибиотикам. Тем не менее, учитывая возросшую мобильность населения, можно ожидать завоза и распространения резистентных штаммов.

Сводная таблица: чувствительность возбудителей к антибактериальной терапии

Возбудитель

Чувствительность к антибактериальной терапии

Нет или в большинстве случаев утеряна

Снижается

В основном сохранена

Acinetobacter baumannii

Пенициллины, цефалоспорины, аминогликозиды, тетрациклин, хинолоны, азтреонам, пиперациллин-тазобактам

Карбапенемы, полимиксин Е

Комбинации:
полимиксин Е +
рифампицин/
карбапенемы/
хинолоны/
цефепим/
ампициллин-сульбактам/
пиперациллин-тазобактам

Pseudomonas aeruginosa

Пенициллины, цефалоспорины, аминогликозиды, тетрациклин, хинолоны

Карбапенемы

Полимиксин Е,
комбинации а/б.
+ В РФ: карбапенемы

Enterobacteriaceae (госпитальные штаммы Klebsiella, Escherichia coli, Citrobacter, Enterobacter, Serratia, Proteus)

Пенициллины, цефалоспорины, тетрациклин, хинолоны

Карбапенемы, аминогликозиды.
+ В РФ: цефалоспорины III-IV пок.

Полимиксин Е,
комбинации а/б.
+ В РФ: карбапенемы

Enterococcus faecium

Пенициллины, цефалоспорины, аминогликозиды

Ванкомицин

Линезолид, тигециклин, даптомицин

Staphylococcus aureus

Пенициллины, цефалоспорины

Защищенные бета-лактамы,

Пенициллины, цефалоспорины

Helicobacter pylori

 

Кларитромицин, метронидазол

В составе комбинированной терапии с ИПП и висмута трикалия дицитратом: амоксициллин, тетрациклин, рифаксимин

Campylobacter spp.

Пенициллины, цефалоспорины, аминогликозиды, тетрациклины.
В ряде стран Азии и Африки: фторхинолоны, макролиды

Фторхинолоны, макролиды

Гентамицин, карбапенемы.
+ В РФ: макролиды, фторхинолоны

Salmonellae

Пенициллины, цефалоспорины, аминогликозиды, тетрациклины, хлорамфеникол, ко-тримоксазол

Фторхинолоны

Фторхинолоны, макролиды, цефалоспорины III-IV пок., карбапенемы

Neisseria gonorrhoeae

Пенициллины, тетрациклины, фторхинолоны, сульфаниламиды

Цефалоспорины

Азитромицин + цефтриаксон.
+ В РФ: цефалоспорины III-IV пок.

Streptococcus pneumoniae

Тетрациклин, ко-тримоксазол

Пенициллины, цефалоспорины, макролиды

Хлорамфеникол, рифампицин, респираторные фторхинолоны, ванкомицин.
+ В РФ: пенициллины, цефалоспорины, макролиды

Haemophilus influenzae

Ампициллин, ко-тримоксазол

Бета-лактамы (в отдельных случаях – защищенные), ко-тримоксазол, хлорамфеникол

Цефалоспорины III-IV пок., карбапенемы, хлорамфеникол, рифампицин

Shigella spp.

Ампициллин, хлорамфеникол

Фторхинолоны

Цефалоспорины III-IV пок., аминогликозиды, ко-тримоксазол.
+ В РФ: фторхинолоны

Резистентность к антибиотикам

Антибиотики используются в клинической практике более 70 лет. Благодаря их применению было спасено миллионы людей. Несмотря на это, и сегодня в XXI веке смертность от инфекционных заболеваний остается высокой. Причиной этому является развитие устойчивости (резистентности) к антибиотикам.


Резистентность к антибиотикам бывает:

  • Природной.
    Когда в микроорганизме отсутствует мишень для действия антибиотика или она недоступна.
    Примеры:
    — β-лактамные антибиотики не действуют на микоплазмы. Мишенью β-лактамов являются ферменты локализованные в стенках бактериальных клеток, которые отсутствуют у микоплазм (у них нет клеточных стенок). Поэтому Mycoplasma spp. имеет природную устойчивостью к β-лактамам;
    — У большинства грамотрицательных бактерий клеточная стенка непроницаема для макролидов, поэтому они обладают природной устойчивостью к этому классу антибиотиков.

Приобретенной.
Эта устойчивость развивается вследствие мутаций микроорганизмов либо при передаче генов от резистентных бактерий к чувствительным бактериям.

Мутации бактериальных клеток приводят к спонтанному появлению резистентных бактериальных клеток. При применении антибиотиков происходит уничтожение чувствительных бактериальных клеток и размножение устойчивых бактерий.
Вследствие этого может образоваться популяция состоящая целиком из резистентных микроорганизмов.

Основным источником генетической информации в бактериальной клетке является хромосома, которая в большинстве случаев образована единственной замкнутой циркуляторной молекулой ДНК. Содержащие в ней гены обеспечивают жизнедеятельность бактерии практически в любых обстоятельствах.

В тоже время, во многих (возможно, что и во всех) бактериях имеются дополнительные молекулы ДНК, получившие название плазмид. По размеру они меньше хромосомной ДНК, не связаны с ней и обычно воспроизводятся отдельно от нее. Гены, которые переносятся плазмидами, чаще всего не являются жизненно необходимыми для выживания бактерий в обыкновенных условиях, но могут придавать клеткам-носителям преимущества в борьбе за существование в некоторых особых обстоятельствах.

Полезные свойства, которые передаются плазмидами, включают в себя:

  • Фертильность: способность к конъюгации и передаче генетической информации другим бактериям;
  • Резистентность к антибиотикам: большинство случаев устойчивости к антибиотикам, которые встречаются в клинических условиях, опосредованы плазмидами;
  • Способность к выработке бактериоцинов – белков, ингибирующих другие бактерии, которые являются экологическими конкурентами данного микроорганизма;
  • Выработку токсинов;
  • Иммунитет к некоторым бактериофагам;
  • Способность использовать необычные сахара и другие субстраты в качестве продуктов питания.

Плазмиды различаются по своим размерам, составу и совместимости. Совместимые плазмиды могут сосуществовать в одной и той же бактерии-хозяине, в то время как несовместимые – нет.

Третьим источником генетической информации в бактериальной клетке являются бактериофаги (или просто – фаги). Бактериофаги – это вирусы, инфицирующие бактерии. Большинство фагов способно атаковать сравнительно небольшое число штаммов определенных бактерий, то есть имеет узкий и весьма специфический круг потенциальных жертв.

Различают две основные группы фагов:

  • Вирулентные фаги, которые неминуемо уничтожают любую инфицированную ими бактерию, в результате из каждой лизированной клетки высвобождается ряд новых частичек фагов;
  • Умеренные (лизогенетические) фаги, которые могут либо лизировать, либо лизогенировать инфицированные бактериальные клетки.
    При лизогении геномы бактерий и умеренного фага сосуществуют в виде единой хромосомы, в которой ДНК хромосомы бактерии и передается по наследству дочерним клеткам. Такой «спящий» фаг получил название профага.
    Тем не менее, на этой стадии некоторые гены профага могут экспрессироваться и придавать новые свойства (в частности, резистентность к антибиотикам) клетке-хозяину. На определенном этапе (во время одного из каждых несколько тысяч делений бактерии) профаг вступает в литический цикл с последующим разрушением бактерии-хозяина и высвобождением новых фаговых частичек в окружающую среду.

Передача генов, кодирующих резистентность, от резистентных бактерий чувствительным микроорганизмам, является более эффективным механизмом приобретения резистентности.

Такая передача осуществляется тремя путями:

  • При трансформации свободная ДНК погибшей антибиотикорезистентной бактериальной клетки захватывается из окружающей среды антибиотикочувствительной бактерией-реципиентом;
  • Трансдукция включает в себя случайную инкорпорацию бактериальной ДНК частичкой бактериофага во время литического цикла фага. При этом ДНК может быть как хромосомной, так и плазмидной. В последующем частичка фага переносит бактериальную ДНК в следующую клетку, которая она инфицирует;
  •  Коньюгация предполагает физический контакт между двумя бактериями.
    В то время, когда два микроорганизма прикрепляются один к другому, происходит односторонняя передача ДНК от клетки-донора клетке реципиенту. Способность к конъюгации зависит от соответствующих плазмид или транспозонов в клетке-доноре.

Наличие перечисленных механизмов передачи генетической информации означает, что не только мутации и селекция определяют эволюцию бактерий. Например, ранее чувствительная к антибиотикам бактерия может при конъюгации приобрести плазмиду, содержащую гены, кодирующие резистентность к нескольким различным антибиотикам. В результате в течение короткого промежутка времени в данной экологической нише может сформироваться пул полирезистентных микроорганизмов.

Основные механизмы, с помощью которых развивается приобретенная устойчивость к антибиотикам:

  •  Разрушение или модификация антибиотика;
  • Меняется мишень для действия антибиотика;
  • Уменьшается проницаемость клеточной стеки для антибиотика;
  • Активное выведение антибиотика из бактериальной клетки;
  • Приобретается новый метаболический путь, на который не влияет антибиотик.

Наиболее важным из этих механизмов является разрушение антибиотика бактериальными клетками (микроорганизмы способны выделять ферменты разрушающие антибиотик). Пример этому служит развитие резистентности к β-лактамным антибиотикам, широко применяемым в клинической практике.

Бактериальные ферменты, разрушающие β-лактамазные антибиотики, получили название β-лактамаз. В связи со способностью гидролиза тех или иных β-лактамных антибиотиков различают пенициллиназы, цефолоспориназы, карбапенемазы и т. д.

Если гены, кодирующие выработку β-лактамаз, находятся в хромосомах, то начинают распространяться резистентные клоны бактерий.
Плазмидная локализация генов, кодирующих выработку β-лактамаз, обуславливает быстрое внутри и межвидовое распространение резистентности.

Практически все грамотрицательные бактерии вырабатывают β-лактамазы (гены локализуются в хромосомах). Опосредованные плазмидами β-лактамазы широко распространены не только среди грамотрицательных микроорганизмов, но и у стафилококков.

Синтезируемые бактериями β-лактамазы могут быть чувствительными и нечувствительными к ингибиторам β-лактамаз .
Ингибиторы β-лактамаз это вещества, которые связываются с β-лактамазами и подавляют их активность.
Плазмидные β-лактамазы грамотрицательных бактерий чувствительны к ингибиторам, а хромосомные, — как правило нет. Некоторые хромосомные β-лактамазы грамотрицательных бактерий эффективно гидролизуют практически все β-лактамные антибиотики, включая карбапенемы.

Также бактериальные клетки могут выделять ферменты модифицирующие антибиотик. В результате этого антибиотик утрачивает возможность связываться со своими мишенями в бактериальной клетке и теряет свою эффективность. Примером служит развитие резистентности к аминогликозидам у грамотрицательных бактерий семейства Enterobacteriacea, когда антибиотики инактивируются в результате ацетилирования, аденилирования или фосфорилирования.

Резистентность может развиваться, когда изменяется мишень для действия антибиотика. Примером этого вида устойчивости может быть резистентность S.pneumoniae к пенициллину.

Существует механизм резистентности, когда антибиотик активно удаляется (выкачивается) с клетки с помощью насосов. Примером служит приобретение устойчивости к тетрациклинам. Тетрациклины, попадая вовнутрь клетки, изгоняются из нее наружу и не успевают связаться со своими мишенями (рибосомами).

Классическим образцом резистентности, опосредованной действием подобных насосов, является разветвленная перекрестная устойчивость некоторых штаммов Pseudomonas auruginosa к β-лактамам, фторхинолонам, тетрациклинам и хлорамфениколу.
Долгое время она приписывалась нарушению проницаемости бактерий для этих антимикробных препаратов. В настоящее время установлено, что она связана с оператором MexAmexBopr M, кодирующим систему изгнания указанных антибиотиков из микробной клетки. Если инактивировать эту систему, то синегнойные палочки становятся высокочувствительными ко всем перечисленным препаратам.

Резистентность может развиваться при нарушении проницаемости бактерий для антибиотиков. Например β-лактамные антибиотики проникают в грамотрицательные бактерии через поры посредством диффузии. Уменьшение числа или радиуса пор приводит к снижению чувствительности бактерий к этим антибиотикам.

Также резистентность может возникнуть, если у бактерий сформируется новый метаболический путь, на который не влияет антибиотик. Например, S. аureus способен образовать дополнительный белок, который полноценно синтезирует клеточную стенку стафилококка и вызывает устойчивость к антистафилококковым пенициллинам (оксациллину и метициллину и), и ко всем β-лактамным антибиотикам.

Описанные механизмы отнюдь не исчерпывают тему приобретения и передачи антибиотикорезистентности. Они дают лишь некоторое представление о способности мира микробов приспосабливаться к изменившимся условиям внешней среды и, прежде всего, — к применению антибиотиков.

Рекомендации по применению антибактериальной терапии для различных инфекций опираются на результатах микробиологических исследований. Такие исследования дают возможность отслеживать чувствительность антибиотиков к ключевым возбудителям заболевания, отслеживать динамику изменения чувствительности, вносить коррективы в стандарты лечения.

На практике различают резистентность возбудителей внебольничных и госпитальных инфекций. При небольшом уровне резистентности эффективность антибактериальной терапии не снижается. Однако лечение становится неэффективным при превышении определенного порогового уровня. Для внебольничных пневмококков пороговый уровень примерно 20-30% резистентных штаммов.

Для госпитальных возбудителей, в результате более широкого применения антибиотиков, формируются высокорезистентные штаммы, которые нередко устойчивы к антибиотикам нескольких классов.
Выраженность и характер резистентности зависит от профиля отделения и традиций использования антибиотиков в конкретном отделении больницы. При этом резистентность будет отличаться не только в разных стационарах, но и в разных отделениях одной и той же больницы.
Поэтому выработка универсальных рекомендаций по терапии госпитальных инфекций вряд ли возможна и должна строиться с учетом микробиологического мониторинга за ситуацией, сложившейся в конкретном отделении.

Распространению резистентных бактерий во многом способствует неадекватное применение антибиотиков в медицине.

Неадекватное использование антибиотиков может быть связано как:

  • С действием врача. Назначение этих медикаментов при вирусных инфекциях и лихорадочных состояниях неинфекционной природы, нерациональная антибиотикотерапия (по длительности, дозировкам, кратности введения, выбору конкретного препарата и т. д.).
  • С действием пациента (несоблюдение полного курса антибиотикотерапии, самолечение остатками не употребленных лекарств и т.д.).

Однако антибиотики используют не только в медицине. Широкое применение они нашли в сельском хозяйстве и животноводстве, причем не только для лечения и профилактики инфекций, но и в качестве стимуляторов роста (животноводство). В последнем случае они обычно назначаются в субтерапевтических дозах. Несомненно, подобное применение – прямая дорога к возникновению и распространению резистентных бактерий.

Серьезную проблему представляет использование антибиотиков и в сельском хозяйстве при обработке антибиотиками больших площадей занятых сельскохозяйственными растениями с применением авиации и других технических средств. Дальнейшее их распространение происходит как среди обслуживающего персонала, так и через пищевую цепочку.

Сложность и многообразие механизмов устойчивости бактерий к антибиотикам стимулировали разработку различных мер по ограничению распространения и преодолению резистентности.

Перспективными подходами к преодолению резистентности являются:

  • Защита известных антибиотиков от разрушения ферментами бактерий или от удаления их из бактериальной клетки посредством мембранных насосов;
  • Применение иных антибиотиков выбранной группы. Например, уровень устойчивости большинства возбудителей госпитальных инфекций к гентамицину в несколько раз выше, чем к другому аминогликозиду антибиотику – амикацину;
  • Применение комбинации антибиотиков;
  • Проведение целевой и узконаправленной антибактериальной терапии;
  • Синтез новых соединений, относящихся к известным классам антибиотиков;
  • Поиск принципиально новых классов антибактериальных препаратов.

Михаил Любко

Литература: Инфекции и антибиотики  И. Г. Березняков. 2004 год. Харьков.

Похожие статьи:

Устойчивость к антибиотикам у бактерий

Большая проблема, которая сейчас стоит в мире антибиотиков это появление все более резистентных бактерий, нечувствительных к антибактериальным препаратам.

Факторы риска развития устойчивости к антибиотикам:

  • Географическое положение. Формирование на определенной территории устойчивых видов бактерий.
  • Предшествующее применение антибиотиков, особенно с нарушением дозировок и сроков лечения. Чем чаще принимать антибиотик, тем все менее и менее эффективен он будет в будущем.
  • Пребывание в организованных коллективах. Это ведет к обмену между собой бактериями, особенно если у кого-то уже имеются устойчивые разновидности этих бактерий, которые вытесняют неустойчивые к антибиотикам микроорганизмы.
  • Микроорганизмы заведений здравоохранения (поликлиники, больницы, хосписы и т.д.). Это так называемая внутрибольничная инфекция, которая самая резистентная среди всех.

Причины развития антибиотикорезистентности у микробов:

  • Мутации
  • Обмен и приобретение другого ДНК в процессе размножения.
  • Образование пленок. То есть это скафандр, которым окружает себя бактерия и защищается от антибиотика. Особенно это характерно для хронических инфекции.
  • При лечение антибиотиками выживают сильнейшие организмы. Затем они размножаются и передают свои защитные свойства своим потомкам. Что-то вроде естественного отбора среди микробов. Вот такие вот выжившие в условиях антибиотикотерапии штаммы составляют почти всю внутрибольничную инфекцию.

На саммите большой восьмерки от 2006 года в Санкт-Петербурге проблему антибиотикорезистентности ставили как угрозу национальной безопасности. Представьте себе, что если антибиотики перестанут действовать, то миру грозит большая угроза высокой смертности от инфекций, как это было до открытия антибиотиков.

По оценкам ВОЗ к 2020 году 80% антибиотиков просто на просто перестанут действовать при таком сильном темпе развития устойчивости микробов к антибиотикам. Но, на мой взгляд, такое заявление слишком категоричное. Поживем увидим, как говориться.

Такой риск резистентности возможен также в связи с использованием антибиотиков в сельском хозяйстве. По некоторым данным на сельское хозяйство в России приходиться 50% всего оборота антибактериальных препаратов, а в некоторых странах еще больше. Например, в США до 75%. И не забывайте, что животных кормят этими лекарствами, чтобы они не болели во время роста. Мясо, курица, яйца могут быть пропитаны антибиотической массой и оказывается в нас с пищей, тем самым создавая риск развития антибиотикорезистентности у людей.

Чтобы не поощрять развитие резистентности не принимайте антибиотики без повода. А лучше перед их применением посоветоваться с врачом.

Вот несколько советов:

  • Принимайте антибиотики по назначению врача
  • Не используйте антибиотики при обычных простудных заболеваниях (ОРЗ)
  • Доводите антибактериальный курс до конца с соблюдением дозы
  • Никогда не используйте оставшиеся антибиотики
  • Ведите профилактику инфекций: чаще мойте руки с мылом, вакцинируйтесь, не контактируйте с инфекционными больными, чтобы свести прием антибиотиков к минимуму.

Самое интересное

Антибиотикорезистентность бактерий — проблема, механизмы

Люди были бессильны перед инфекциями — выживали те, кому повезло. Успех таких мер как вакцинация (поначалу встречавшая отпор и непонимание) и введение противодифтерийной сыворотки резко подняли авторитет врача и медицины в целом. А с изобретением антибиотиков смертность от инфекций упала в десятки и сотни раз. Многие опасные заболевания (такие как чёрная оспа) были побеждены полностью, другие (чума, проказа) — стали редкостью. Даже нового грозного врага — ВИЧ — удалось взять под контроль антиретровирусной терапией. Казалось, что борьба с инфекциями отныне будет встречаться с трудностями скорее социальными, чем медицинскими.

Но появилась новая опасность — нарастание резистентности к антибиотикам.

Бактерии могут развить устойчивость к воздействию препарата. Это может происходить за счет случайных мутаций, а также при непосредственном обмене генетической информацией. То есть, бактерия, у которой нет гена резистентности, может получить его от «подруг» и мгновенно научиться бороться с новым неблагоприятным фактором (антибиотиком).

Использование большего количества антибиотиков также может повысить шанс появления устойчивых микроорганизмов. Это часто происходит в больницах, где разные штаммы одного микроорганизма могут быстро и легко обмениваться между собой генетической информацией. Кроме того, во многих странах, в том числе и в России, антибиотики широко используются в растениеводстве, животноводстве, в пищевой и консервной промышленности. В результате антибиотики попадают в человеческий организм и оказывают негативное влияние на его микрофлору.

Быстрое развитие устойчивых к антибиотикам бактерий приводит к росту числа инфекций, которые трудно поддаются лечению. В 2018 году в США и Европе от устойчивых инфекций умерло около 50000 человек, а к 2050 году смертность может составить 10 млн человек в год по всему миру. Устойчивый к лекарственной терапии туберкулез уже сейчас уносит жизни многих россиян.

Неужели нас снова ждёт мир, где любая операция или открытый перелом грозят гибелью, а от пневмонии гибнет 30% заболевших? Затруднительным станет и лечение, снижающее иммунитет, например, химиотерапия рака. Одним словом, крах антибиотиков может привести к весьма неприятным последствиям для человечества. Что же делать?

Замедлить распространение резистентности

США и Европа осознали масштаб проблемы и действуют. Принимаются меры, позволяющие замедлить распространение резистентности к антибиотикам: в корм запрещают добавлять препараты, которые используют для лечения человека; а во многих европейских странах не разрешено использование антибиотиков для стимуляции роста животных и птиц.

 

Ведётся борьба с необоснованными назначениями антибиотиков при вирусных или грибковых инфекциях, самодеятельностью пациентов в антибиотикотерапии, более того запрещается продажа антибиотиков без рецептов. Вместо использования препаратов широкого спектра действия, по возможности, применяются препараты узкого спектра: при сфокусированном ударе по конкретному виду бактерий резистентность развивается медленнее.

И, разумеется, каждый человек может внести свой вклад в борьбу с резистентностью, принимая антибактериальные препараты строго по назначению врача, пропив курс антибиотика полностью, а не пять дней вместо десяти. Увы, пока развивающиеся страны (включая Россию) не включены в эту борьбу в полной мере.

Разрабатывать вакцины

Одним из решений проблемы устойчивости к антибиотикам является предупреждение развития инфекции, т.е. заражения. Для этого широко применяется вакцинация. В отличие от антибиотиков, к ним резистентность не вырабатывается: вакцина не борется с конкретными штаммами, а создает специфический иммунитет против них заранее. 

Разумеется, необходима разработка новых вакцин, в том числе и для предупреждения таких инфекций, как стафилококк и других агрессивных и «подхвативших устойчивость» микробов. Конечно, никто не мешает микроорганизмам эволюционировать, как это делает вирус гриппа, против которого приходится каждый год составлять новую вакцину. Тем не менее, состав вакцины почти всегда удаётся сделать достаточно эффективным. Однако пока вакцины против стафилококка показывают лишь ограниченную и непродолжительную эффективность, так что разработки продолжаются.

«Испортить» бактерию на клеточном уровне

Многие антибиотики работают именно так. Антибиотики могут нарушать синтез клеточной мембраны микроорганизма, клеточной стенки, синтез нуклеиновых кислот, аминокислот, белков. Однако мишенями прежних лекарств были ферменты или пептиды, связанные со стадиями сборки белка. В свою очередь бактерии могут мутировать и менять структуру своих ферментов, делая их недоступными для препаратов или делать антибиотик неактивным, или снижать проницаемость для антибиотика и даже как бы «выталкивать» из себя антибиотик.

В последнее время идет активная разработка новых антибиотиков, которые взаимодействуют с такими базовыми структурами внутри бактерии, что тем не удается с ходу изменить их и приспособиться.

Так, в 2016 году в человеческом носу было обнаружено вещество, действующее против особо опасных бактерий вида Staphylococcus aureus (MRSA) (эта бактерия также относится к стафилококкам, но не вредит организму). Это вещество получило название «Лугдунин» в честь бактерии, которая его синтезирует. Лугдунин имеет необычную химическую структуру и может быть прототипом для нового класса антибиотиков — «Фибупептид».

Еще одно вещество, синтезируемое бактерией Eleftheria terrae, получило название «Теиксобактин». Оно преодолевает многие виды лекарственной устойчивости (в том числе и мультирезистентный туберкулёз). Это вещество целится в молекулярные комплексы, которые бактерия никак не может изменить путем мутаций, поэтому готовых генов против теиксобактина в природе нет, и он не может «подхватить устойчивость» от другой бактерии. Правда, не исключено, что с годами бактерии все-таки найдут способ и приспособятся даже к теиксобактину. Но выиграть время тоже важно.

Возможны и другие подходы к воздействию на бактерии — например, комбинация антибиотика с молекулами класса алкилрезорцинов. Это молекулы, которые выделяют растения и бактерии в окружающую среду для защиты от внешних факторов и паразитов. Алкилрезорцины портят бактерию изнутри, воздействуя сразу и на мембраны клеток, и на белки, и на геном, что дает возможность антибиотику все-таки воздействовать на неё. Биологи назвали комбинацию антибиотика с алкилрезорцинами «суперпулей»: эффективность лечения повышается в 1000 раз, а развитие устойчивости замедляется в 10-30 раз.

Менахем Шоам из Кливлендского университета заражал мышей устойчивым к антибиотикам стафилококком (смертельной бактерией MRSA, против которой сейчас не существует никакого лечения), дожидался сепсиса и вводил им молекулы, которые не дают бактериям вырабатывать токсины. Все мыши выжили, в то время как без лечения умерло две трети зараженных животных.

Еще один способ усилить эффект антибиотика был предложен учеными из Бостонского университета. Они добавляли к антибиотику ионы серебра. Зная антисептические свойства серебра, исследователи предположили, что современный антибиотик при добавлении небольшого количества этого вещества может убить в 1000 раз больше бактерий.

Взять в союзники врагов наших врагов

Ещё одно перспективное и пока не очень хорошо изученное направление борьбы — разработка бактериофагов, вирусов, поражающих бактерии. Эти вирусы так же изменчивы, как и сами бактерии и могут приспособиться к их резистентности. Но для этого требуется все время собирать и обновлять «коллекции» бактериофагов.

Так, в 2018 году Грэм Хэтфул из университета Питтсбурга спас пятнадцатилетнюю девушку, больную муковисцидозом. После пересадки легких ее организм атаковали бактерии, устойчивые к антибиотикам, и она умерла бы, если бы не экспериментальное лечение: врачи ввели ей генетически модифицированные вирусы, убивающие этот вид бактерий. Девушка выздоровела, а бактерии не показали никаких признаков формирования устойчивости к вирусам.

Отучить бактерии вырабатывать резистентность

Это, конечно, самый надёжный способ. Поэтому механизм резистентности сейчас досконально изучается, чтобы возможно было отредактировать геном бактерии и отучить её мутировать. При помощи метода редактирования генома CRISPR нарушаются несколько ключевых биохимических процессов в клетках. Метод получил название CHAOS (Controlled Hindrance of Adaptation of OrganismS — «контролируемое подавление адаптаций организмов»). После этого старые добрые антибиотики снова заработают, и мы сможем жить с бактериями в состоянии контролируемой войны. Но и этот метод пока только разрабатывается.

Кто быстрее эволюционирует — бактерии или мы? Ответ на этот животрепещущий вопрос мы узнаем через несколько десятилетий.


Читайте также:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *