Хромосома хх – Cиндром Клайнфельтера – кариотип, симптомы, диагностика и лечение

Хромосома Х. Круги незнания

Мысль достаточно тривиальная: чем больше мы узнаем о предмете, тем больше проблем возникает и тем шире становится круг нашего незнания.

Когда мы не знали, что такое наследственность, круг нашего незнания об этом предмете был очень узок, и самой важной проблемой казалось-правы ли анималькулисты, которые считали, что в каждом сперматозоиде содержится маленький человечек, или овисты, которые помещали этого человечка в яйцеклетку. Круг нашего незнания значительно расширился, когда мы узнали, что наследственный материал находится в хромосомах. Еще шире он стал, когда оказалось, что хромосомы разные. Выделили группу аутосом — хромосом, которые присутствуют в клетках мужчин и женщин, и пару половых хромосом. У женщин эта пара представлена двумя хромосомами X, а у мужчин одна X, а другая Y.

Буквой X в математике обозначается неизвестная величина. Что же, X — самая неизвестная хромосома? Это как на нее посмотреть. Из всех хромосом человека и других животных она — самая изученная. И поэтому круг нашего незнания о ней наиболее широк. Вернее, их несколько, этих кругов.

Круг 1: Определение пола

В школьном учебнике написано, что все клетки тела женщины имеют две Х-хромосомы, а мужчины — одну X и одну Y. При образовании половых клеток парные хромосомы расходятся в разные клетки так, что каждая яйцеклетка получает по одной X-хромосоме. Среди сперматозоидов половина несет Х-хромосому, половина — Y. В результате при оплодотворении получается половина девочек, XX, и половина мальчиков, XY. А кем будет новорожденный с хромосомам и XXY? Мальчиком. А с одной X без Y? Девочкой. Отсюда следует, что ключевую роль в определении пола играет Y-хромосома. Именно на Y-хромосоме находится ген-регулятор SRY. Он запускает дифференцировку XY эмбрионов по мужскому типу.

Ранние стадии эмбрионального развития XX- и XY-зародышей абсолютно идентичны. У тех и других в свое время образуются зачатки и мужского, и женского репродуктивного тракта, а зачатки половых желез -гонад и вовсе одинаковы. На определенном этапе эмбриогенеза у XY-зародышей недифференцированный зачаток гонад начинает развиваться по мужскому типу. После этого мужские гонады выделяют два гормона: один стимулирует развитие мужского полового тракта, другой — инволюцию женского. Иными словами, чтобы получить мальчика, надо кое-что сделать. Если не делать ничего — получится девочка.

Ген (или гены), которые делают это кое-что-запускают дифференцировку гонад по мужскому типу со всеми вытекающими последствиями, — находятся в Y-хромосоме. В редких случаях этот ген перемещается с Y на X, и тогда мы получаем XX особей мужского пола и соответственно XY особей женского пола.

Этот ген SRY (Sex reversal Y) сейчас выделен и расшифрован. Его роль в детерминации мужского пола была показана в прямом опыте. ДНК этого гена ввели в оплодотворенную ХХ-яйцеклетку мыши и получили ХХ-самца.

Итак, мы теперь имеем в руках ген мужского пола и знаем, что он работает. Мы также знаем, где, когда и как долго он работает. Где? В зачатке еще не дифференцированных по полу половых желез. Когда? Когда зачаток уже есть, но еще не дифференцирован. Как долго? У мыши день-полтора. Когда дифференцировка гонады завершается, он уже не нужен. Что он делает? Синтезирует белок, который связывается с другим геном, находящимся в девятой хромосоме человека, и активирует его к производству белка, который в свою очередь или непосредственно запускает дифференцировку гонад по мужскому типу, или опять же связывается с третьим геном, который неизвестно где находится и что делает.

Круг 2. Компенсация дозы

Интересно заметить : Х-хромосома млекопитающих содержит 5% от общего числа генов, a Y — такую малость, что и говорить не о чем. Но тогда получается, что у всякой женщины на 5% больше генов, чем у любого сколь угодно красивого и умного мужчины.

Есть несколько способов преодоления этого дисбаланса, или компенсации избыточной дозы генов у самок. У самцов насекомых единственная X-хромосома работает вдвое активнее, на уровне двух Х-хромосом насекомых-самок. У гермафродитов нематод, выполняющих самочьи функции, каждая из двух Х-хромосом работает вполсилы по сравнению с единственной Х-хромосомой самцов.

Млекопитающие выбрали третий путь. В каждой клетке организма самки работает только одна Х-хромосома, а вторая молчит: она практически полностью инактивирована и очень плотно упакована.

Инактивация происходит довольно рано в ходе эмбрионального развития. На самых ранних стадиях работают обе Х-хромосомы. Затем часть клеток специализируется на выполнении питающей функции. (Позднее эти клетки войдут в состав плаценты.) И в этих клетках необратимо «выходит из игры» — инактивируется одна из Х-хромосом, и именно та, что была получена от отца. Остальные клетки некоторое время остаются неспециализированными и при этом пользуются услугами обеих Х-хромосом. Они называются клетками внутренней массы эмбриона, и далее, в результате процесса дифференцировки, из них формируется собственно эмбрион. Этот процесс как раз и сопровождается выключением одной из Х-хромосом. Однако выбор хромосомы, подлежащей инактивации, происходит случайно: в одной клетке инактивируется отцовская

Х-хромосома, в другой — материнская. (Так этот процесс идет у всех млекопитающих, включая человека и исключая сумчатых. У сумчатых во всех клетках инактивируется Х-хромосома, полученная от отца. Не спрашивайте меня почему. Так получилось.) При этом единожды сделанный выбор не пересматривается. Если в некой клетке-прародительнице отключилась материнская Х-хромосома, то во всех дочерних, внучатых и т. д. клетках она же останется выключенной.

Рассмотрим этот процесс на кошках. Ген рыжей окраски находится у них вХ-хромосоме. Если мы скрестим рыжую кошку с черным котом, то все их сыновья будут рыжими (X от матери, У от отца), а дочери — черепаховыми. В момент дифференцировки пигментных клеток у самок-эмбрионов в одних клетках инактивируется отцовская Х-хромсосома с черным геном, а в других материнская с рыжим геном. И те и другие производят клоны клеток, в которых сохраняется и воспроизводится неактивное состояние соответствующих Х-хромосом. Поскольку дочерние клетки обычно располагаются рядом, то мы и видим на шкурке у черепаховых кошек рыжие и черные пятна. В первых инактивирована X-хромосома с черным геном, во вторых-с рыжим.

Я уже сказал, что инактивированное состояние сохраняется стабильно в ряду клеточных поколений во всех клетках тела. Половые клетки — исключение из этого правила. В их предшественниках инактивация происходит, но при образовании самих половых клеток молчавшая несколько клеточных поколений Х-хромосома реактивируется. Это у самок. У самцов, наоборот, инактивируется единственная

Х-хромосома. Но об этом мы поговорим подробнее в третьем круге, а пока вернемся к нашим самкам.

Наши предки имели недифференцированные половые хромосомы (1). Затем на одной из них возник ген-регулятор мужского пола — SRY (2). Для того, чтобы предотвратить перенос этого гена с Y-хромосомы на X, возник запрет на спаривание между большими частями этих хромосом (3). Часть Y-хромосомы, исключенная из спаривания, постепенно деградировала (4).

До сих пор мы находились в пределе круга знаний школьного учебника. А сейчас вступаем на круги незнания.
Оказывается, клетки умеют считать свои Х-хромосомы. Посчитав, они поступают по правилу : только одна Х-хро-мосома должна быть активна в диплоидной клетке (имеющей нормальный двойной набор аутосом). Все, что сверх этого, -должно быть инактивировано. То есть если клетка диплоидная, но имеет четыре Х-хромосомы, то три из них молчат. Если же клетка тетраплоидная (четверной набор аутосом) и те же четыре Х-хромосомы, то две молчат, две работают. Как клетки производят эту калькуляцию — никто не знает, хотя это очень любопытно. Ни одна из аутосом на такое не способна. Может быть, клетка учитывает объем ядра, который пропорционален плоидности?

Следующий вопрос: что-то (так и хочется сказать: кто-то) заставляет одну из Х-хромосом инактивироваться или она это делает сама и добровольно? Пока неясно. Мы можем подозревать, что сигнал приходит извне от загадочного счетного устройства. Далее опять пробел в наших знаниях, заполненный самыми правдоподобными фантазиями, которые ограничены (наконец-то!) некоторыми фактами. На Х-хромосоме существует ген, который активно работает на инактивированной Х-хромосоме. Продуктами данного гена являются очень большие молекулы специфической РНК, названой XIST — X-inactive specific transcript. Эти молекулы не используются в качестве матриц для синтеза белков, а работают сами по себе. Они, несомненно, принимают участие в установлении неактивного состояния, так как Х-хромосома, у которой отсутствует район гена XIST, никогда не инактивируется. Если же ген XIST искусственно перенести на аутосому, то она инактивируется. Ген XIST был выделен и проанализирован. Его активные участки оказались очень сходными у человека, мыши и других млекопитающих.

XIST действует только на ту хромосому, которая его произвела, а не инактивирует все подряд. Создается впечатление, что молекулы XIST действуют строго локально, как бы расползаясь вдоль по хромосоме от места синтеза. Молекулы XIST окутывают Х-хромосому, словно кокон и очень хочется написать — тем самым выключают ее из активной работы. Но увы. Строгих доказательств тому нет, а даже наоборот. Существуют данные, что удаление района гена XIST из уже инактивированной Х-хромосомы не приводит к восстановлению ее активного состояния. А как же тогда происходит поддержание неактивного состояния Х-хромосомы в ряду клеточных поколений, при чем тут XIST? Видимо, в момент установления инактивированного статуса, активный ген XIST жизненно необходим, а потом в нормальных инактивированных

Х-хромосомах XIST синтезируется постоянно. Зачем? Кто его знает. Наверное, на всякий случай.

Я все время говорил, что одна из Х-хромосом у самок инактивируется. Но до сих пор умалчивал о том, что инактивация никогда не бывает полной. Ряд генов неактивной Х-хромосомы ускользает от инактивации. Понятно, почему (но непонятно как) избегает инактивации район спаривания с Y-хромосомой. Дело в том, что в данном районе находятся гены, присутствующие и на Х- и на Y-хромосомах: то есть и у XY-самцов таких генов по паре, и у XX-самок их столько же — этим генам не нужна компенсация дозы. Но откуда механизм Х-инактивации знает, что их трогать не надо, — остается загадкой.

И уж, казалось бы, совсем незачем инактивировать единственную Х-хромосому у самцов. Тем не менее это регулярно происходит. Но тут начинается уже третий круг незнания.

Круг З : Х-хромосома у самцов

Инактивация единственной Х-хромосомы у самцов происходит в предшественниках сперматозоидов. Они, клетки-предшественники, как и все клетки тела самцов, содержат двойной (диплоидный)набор аутосом и пару половых хромосом X и Y. В сперматозоидах же (как и в яйцеклетках) количество хромосом должно быть вдвое меньше — каждая хромосома в одном экземпляре. Тогда после оплодотворения двойной набор восстановится, и все начнется сначала. Как верно говорил В.И.Ленин, обращаясь не то к меньшевикам, не то к ликвидаторам, а может, и к отзовистам: «Прежде чем объединиться, необходимо размежеваться».

Процесс клеточного деления, при котором происходит редукция числа хромосом в половых клетках, называется мейозом. И в ходе этого процесса хромосомам, прежде чем размежеваться, приходится объединиться. На начальных стадиях мейоза каждая хромосома находит свою пару (не спрашивайте меня, как она это делает — это отдельная и преобширнейшая область незнания) и сливается с ней по всей длине. При этом хромосомы могут обмениваться участками. Когда спариваются две Х-хромосомы в мейозе у самок, проблем не возникает.

Хотя нет, проблема возникает, но заблаговременно устраняется. Проблема в том, что до вступления в мейоз одна из Х-хромосом находится в инактивированном и, следовательно, в плотно упакованном состоянии. Ее ДНК закрыта не только для транскрипции (синтеза РНК), но и для узнавания своей активной парой. Поэтому, а вернее, для этого она реактивируется непосредственно перед вступлением в мейоз (Понятно для чего, но непонятно как.)

У самцов в мейозе проблема прямо противоположного свойства . Х-хромосома одна и Y — одна, и они должны объединиться, чтобы потом размежеваться. А у них всего-то и общего друг с другом, что небольшой район спаривания. По сходству этих районов они друг друга и опознают, и в этом районе (простите за тавтологию) спариваются и обмениваются участками.

А что же те части, которые различны у Х- и Y-хромосом? Они остаются неспаренными. И, надо вам сказать, в половых клетках на этой стадии действует суровый закон — клетки, содержащие неспаренные хромосомы, на следующую стадию не пропускаются и подлежат уничтожению. Как тогда быть с неспаренными частями Х- и Y-хромосом? Правильно, надо их упаковать так, чтобы не нашли клеточные контролеры, то есть — инактивировать. Благо механизм такой инактивации уже есть и успешно используется в клетках тела самок — XIST. Так оной происходит, и XIST действительно принимает в этом участие. В мужском мейозе молекулы XIST плотно окутывают Х- и Y-хромосомы и делают их недоступными для контролеров неспаренности. Но можно ли сказать, что самцы используют механизм, открытый самками? Нет, нельзя.
Теперь мы должны войти в четвертый круг и поговорить о том, как много мы не знаем об эволюции половых хромосом.

Круг 4 : Эволюция половых хромосом

Когда-то давным-давно во времена динозавров у наших очень далеких предков Х- и Y-хромосомы были одинаковыми. Отличия заключались в том, что Y несла ген мужского пола, а X — нет. Они до сих пор остались почти одинаковыми у однопроходных млекопитающих — ехидны и утконоса. У сумчатых и плацентарных млекопитающих Х- и Y-хромосомы далеко и безнадежно разошлись.

Как и почему это произошло, мы не знаем и не узнаем уже никогда. Можем только строить гипотезы. Вот этим-то мы с вами сейчас и займемся. Итак, на Y-хромосоме находились гены детерминации мужского пола. Для того чтобы соблюдалось стабильное соотношение полов 1:1 (почему нужно именно 1:1 — это отдельная история), они должны были находиться там постоянно, а не скакать с Y на X и обратно. Наиболее простой способ предотвратить эти переходы — не давать спариваться в мейозе той части npото-Y-хромосомы, где были гены мужского пола, с той частью прото-Х-хромосомы, где таких генов не было. Если они не спариваются, то не могут обмениваться участками. Но неспаренные участки следовало спрятать от контролеров спаренности. Здесь-то и мог возникнуть и зафиксироваться механизм временной упаковки половых хромосом. Уже потом, гораздо позже, этот
механизм пригодился для постоянной инактивации избыточной дозы Х-хро-мосомных генов у самок.

Но как только прекратился обмен генами между Х- и Y-хромосомами, Y-хромосома начала катастрофически деградировать, терять активные гены и становиться все более отличной от X. Почему прекращение обмена вызвало деградацию? Дело в том, что спаривание парных хромосом выполняет очень важную функцию сверки генного состава.

Вновь возникающие дефекты при этом быстро и эффективно устраняются (как это происходит — еще один, и очень широкий, круг незнания). Прекращение спаривания делает очистку от дефектов невозможной. Дефекты накапливаются, гены разрушаются, и хромосома деградирует. Это процесс был воспроизведен в прямом эксперименте. В одну из аутосом дрозофилы ввели генетический фактор, который блокировал ее спаривание в мейозе. За считанные поколения эта хромосома деградировала. Можно предположить, что Y-хромосома после частичного развода с X прошла именно этот путь. Гены, необходимые для детерминации мужского пола, поддерживались в рабочем состоянии естественным отбором, все прочие гены накапливали дефекты и постепенно деградировали. С Х-хромосомами этого не произошло. Встречаясь при очередной смене поколений в клетках женщины, они спаривались друг с другом, сверяли свой генный состав и тем самим поддерживали все гены в рабочем состоянии.

Но Х-хромосоме тоже пришлось платить за развод с Y-хромосомой. Утрата активных генов на Y и возникновение дисбаланса между дозой генов у самцов и самок привели к необходимости компенсации избыточной дозы генов Х-хромосомы у самок. Для решения этой проблемы, по-видимому, и был использован ранее открытый самцами механизм.

Это в свою очередь наложило жесткий запрет на любые переходы генов с аутосом на половые хромосомы и обратно. Действительно, многие — если не все — аутосомные гены привыкли работать в паре, поэтому отключение одного из членов пары в X-хромосоме имело бы роковые последствия для носителей такой генной комбинации. К неблагоприятным последствиям может привести и перенос генов с Х-хромосомы на аутосому: такие гены не будут инактивироваться и вместо предусмотренной одной копии генов в клетках самок будут работах обе копии.

В результате генный состав Х-хромосом у плацентарных млекопитающих законсервировался. Все они имеют практически одинаковые по набору генов Х-хромосомы, в то время как их аутосомы претерпели значительные изменения в ходе эволюции.

Эволюция половых хромосом, таким образом, была сопряжена с паллиативными решениями возникающих проблем и противоречий. Эти решения создавали новые проблемы, которые тоже решались паллиативно, и так до бесконечности. Нашему творческому уму такой процесс кажется абсолютно бессмысленным и нецелесообразным. Результаты, достигнутые в ходе этого процесса (механизмы определения пола, дозовой компенсации, характер поведения хромосом в мужском и женском мейозе), также представляются неоправданно усложненными и нецелесообразными. Если взяться с умом и четко сформулировать цель, все это можно было бы организовать гораздо проще, надежней и экономичней. Но в том-то все и дело, что эволюция ни в коем случае не есть целенаправленный процесс. Эволюции в самом существе своем — это постоянный поиск мелких решений сиюминутных задач. Чаще всего решения находятся не самые лучшие из возможных. Более того, они порождают новые проблемы, которые требуют решений. И эти решения опять же оказываются паллиативами — и так до бесконечности.
А нам остается восхитительная задача: распутывать эти нескончаемые клубки проблем, все более и более расширяя круги нашего незнания.

Источник: Ufolog.ru

X-хромосома — Википедия

Материал из Википедии — свободной энциклопедии

X-хромосо́ма — половая хромосома. У всех млекопитающих и других организмов с гетерогаметным мужским полом у самок две X-хромосомы (XX), а у самцов — одна X-хромосома и одна Y-хромосома (XY). Существуют и организмы (например, утконосы), у которых несколько негомологичных X-хромосом.

X-хромосома человека

X-хромосома человека содержит около 150 миллионов пар оснований, что составляет примерно 5 % ДНК в клетках женщин, 2,5 % в клетках мужчин[1]. Несёт более 1400 генов, из них белок-кодирующих — около 800[2] (ср. с Y-хромосомой, которая несёт всего 78 генов[3]). У женщин две X-хромосомы; у мужчин одна X-хромосома и одна Y-хромосома. Одна X-хромосома наследуется от матери, а вторая (только у женщин) от отца.

Хотя у женщин две X-хромосомы, в соматических клетках одна из них инактивирована и образует тельце Барра.

Хромосомные болезни по X-хромосоме

X-связанные заболевания

Гены

Плечо p

Плечо q

История

X-хромосома издавна славится своими особыми свойствами среди генетиков, которые назвали её буквой X не за форму, как можно было бы предположить[4] (аутосомы так же похожи на букву X), а потому, что первые исследователи были сбиты с толку тем, насколько X-хромосома отличается от других хромосомных пар. Y-хромосома была названа следующей буквой алфавита потому, что была открыта следующей. Тот факт, что Y-хромосома во время митоза имеет два очень коротких плеча, которые выглядят под микроскопом Y-образно, является случайным совпадением[5].

X-хромосома была впервые выделена в 1890 году Германом Хенкингом (англ. Hermann Henking) в Лейпциге. Хенкинг занимался исследованиями яичек клопов и заметил, что одна хромосома не принимает участие в мейозе. Хенкинг не был уверен, были ли это хромосомы или объекты другого класса и, следовательно, назвал его X-элементом[6], позже было установлено, что это были действительно хромосомы, которые получили название X-хромосома[7].

В 1901 году Клэренс Эрвин МакКланг (англ. Clarence Erwin McClung) впервые предположил, что X-хромосома участвует в определении пола на основании сравнения своего исследования саранчи с работами Хенкинга и других. МакКланг заметил, что только половина сперматозоидов получают X-хромосому. Он посчитал её дополнительной хромосомой, определяющей мужской пол. Позднее это было установлено, что МакКланг ошибся, а хромосомой, определяющей мужской пол, скорее является Y-хромосома[6].

См. также

Примечания

  1. Ross MT, Grafham DV, Coffey AJ, et al. (March 2005). «The DNA sequence of the human X chromosome». Nature 434 (7031): 325–37. DOI:10.1038/nature03440. PMID 15772651.
  2. ↑ Chromosome X: chromosome summary (англ.). The Ensembl project. Проверено 28 мая 2013. Архивировано 29 мая 2013 года.
  3. Richard Harris. Scientists Decipher Y Chromosome (2003). Проверено 16 августа 2009. Архивировано 13 марта 2012 года.
  4. Angier, Natalie For Motherly X Chromosome, Gender Is Only the Beginning. New York Times (1 мая 2007). Проверено 1 мая 2007.
  5. ↑ David Bainbridge, The X in Sex: How the X Chromosome Controls Our Lives, pages 65-66, Harvard University Press, 2003 ISBN 0674016211.
  6. 1 2 James Schwartz, In Pursuit of the Gene: From Darwin to DNA, pages 155—158, Harvard University Press, 2009 ISBN 0674034910
  7. ↑ David Bainbridge, The X in Sex: How the X Chromosome Controls Our Lives, pages 3-5, Harvard University Press, 2003 ISBN 0674016211.

Ссылки

  • Chromosome X на сайте National Center for Biotechnology Information  (англ.)

От чего зависит пол будущего ребёнка

Всем привет, с вами Ольга Рышкова. Из школьного и ВУЗовского курса многие знают, что пол человека формируется в период зачатия и определяют его хромосомы. Вы помните, что у человека 23 пары хромосом? Каждая клеточка нашего тела содержит этот набор хромосом.

У мужчин и женщин все пары хромосом одинаковые, кроме одной пары. Это половые хромосомы. В этой паре у женщин одинаковые хромосомы, а у мужчин разные. Именно эта пара определяет наш пол. У женщин это две Х хромосомы (ХХ), а у мужчин ХУ хромосомы.

Посмотрите, это видно на рисунке – все пары хромосом у мужчин и женщин одинаковые, а половые хромосомы, обведённые кружочком, разные.

Все наши клетки имеют парные хромосомы (двойной набор), а вот в половых клетках (яйцеклетках у женщин и сперматозоидах у мужчин) — одиночный набор. То есть все яйцеклетки женщин имеют одну Х-хромосому. А у мужчин половина сперматозоидов имеет Х-хромосому, половина У-хромосому.

Пол ребёнка зависит от сперматозоида мужчины.

Так почему же рождаются мальчики или девочки? Пол будущего ребёнка зависит от того, какой сперматозоид проникнет в яйцеклетку – с Х-хромосомой или с У-хромосомой. Вы поняли, что пол ребёнка зависит от сперматозоида мужчины?

Если так, будет мальчик.

 

А если так, будет девочка.

Тут вмешиваются гормоны.

Оказалась, что пол будущего ребёнка формируется не только при определённом наборе хромосом. Только недавно учёные обнаружили, насколько важна роль тестостерона в том, кем будет ребёнок – мужчиной или женщиной. Всю жизнь мы находимся под влиянием гормонов. Но наиболее активно влияние этих химических веществ в то время, когда определяется наш пол, ещё до рождения.

Это вас может шокировать.

Почти никто не знает, что человеческий зародыш в первые 6 недель развивается как женщина. То есть все мы, включая 100%-ных мужчин, независимо от набора хромосом, сначала развивались как женщины. И только на седьмой неделе, когда начинается формирование половых желез, когда у эмбриона с набором хромосом ХУ начнут формироваться семенники, вырабатывающие тестостерон, только тогда начнётся формирование мужчины.

Пол определяется тестостероном.

Независимо от того, какой набор хромосом у плода – ХХ или ХУ, только наличие или отсутствие тестостерона сформирует его мальчиком или девочкой. Если гормон не вырабатывается, то в любом случае будет девочка.

Это нормально?

Это может быть нормой, а может быть патологией. На 7-8 неделе под влиянием У-хромосомы у эмбриона начинают формироваться семенники, они выделяют тестостерон, и под влиянием тестостерона развиваются наружные половые органы и изначально женские гениталии превращаются в мужские. Это норма.

Под влиянием Х-хромосомы на 7-8 неделе у плода начинают формироваться яичники, они не выделяют тестостерон и женские половые органы продолжают развиваться как женские. Это тоже норма.

А в чём же патология?

Учёные пришли к выводу, что тестостерон влияет на пол будущего ребёнка, когда стали изучать людей с мужским набором хромосом, которые так и не стали обычными мужчинами. Есть такая патология, она называется синдром невосприимчивости к андрогенам (СНА). Это генетическое отклонение. Оно наблюдается у 1 из 30 000 младенцев, когда эмбрион мужского пола не может использовать вырабатывающийся тестостерон и не воспринимает мужские половые гормоны.

Люди с синдромом невосприимчивости к андрогенам являются наглядной демонстрацией того, что пол ребёнка определяют не столько хромосомы, сколько гормоны. Несмотря на мужской набор хромосом плод с этим синдромом не может развиваться в мальчика, поскольку тестостерон не может выполнить свою задачу.

Мальчики рождаются девочками.

В такой ситуации эмбрион генетически мужского пола. У него есть семенники, которые вырабатывают тестостерон. Но в его клетках отсутствуют рецепторы или структуры, воспринимающие тестостерон. Поэтому этого гормона как бы и нет. Как следствие, дети, у которых этот синдром проявляется в самой яркой форме, при рождении во всём похожи на девочек. То, что генетически они мужчины, становится ясно, только когда в положенный срок у них не начинаются менструации.

Синдром невосприимчивости к андрогенам дал учёным понять, что гормоны формируют половую принадлежность человека не меньше, чем хромосомы.

До 70 годов мы не умели определять концентрацию гормонов, поэтому только теперь вдруг осознали ситуацию, которая существовала много веков. Есть мнение, что у Жанны д’Арк был этот синдром.

Гормоны влияют на поведение.

Разобравшись в синдроме невосприимчивости к андрогенам, учёные начинают понимать, насколько сильно влияние гормонов на наше развитие. А как обстоит дело с развитием психическим? Сказывается ли влияние гормонов на различиях в мужском и женском поведении.

Если понаблюдать за тем, во что играют дети, то, как правило, мы увидим, что девочки чаще, чем мальчики играют в куклы, а мальчики  — в машинки, паровозики и тому подобное. Вот уже 40 лет, как нам стало известно, что тестостерон и другие гормоны оказывают сильное влияние на поведение животных. Однако в отношении человека вопрос долго оставался открытым ввиду чрезвычайной сложности проведения чистых экспериментов. Вполне понятно, что мы не можем просто так вводить людям гормоны, чтобы посмотреть, к чему это приведёт.

Мы с вами не исследователи, но легко обнаруживаем отличия в мужском и женском поведении. Не так-то просто вычленить влияние многих факторов, влияющих на развитие мужское и женское. Но вот недавно появились интересные факты, говорящие о том, что гормоны играют в этом немалую роль.

Женщины с мужскими гормонами.

Для этого учёные стали наблюдать за теми, у кого концентрация гормонов не типична для людей этого пола. Высокая концентрация тестостерона нетипична для женщин. Но именно её учёные обнаружили у женщин с врождённой гиперплазией коры надпочечников. В период внутриутробного развития этих женщин вырабатывается тестостерон в тех же количествах, что и у мужчин.

Врождённая гиперплазия коры надпочечников не столь уж редкое явление. Она встречается у 1 из 6 тысяч детей. Эти девочки в будущем должны будут всю жизнь принимать лекарства, чтобы  оставаться женщинами. Компенсационный механизм организма побуждает надпочечники действовать на полную мощность, а единственное, на что они способны – это вырабатывать тестостерон в огромных количествах.

Первым признаком избытка тестостерона у девочек является то, что они рождаются с гениталиями неправильной формы, поскольку тестостерон уже начал превращать женские наружные половые органы в мужские. Учёные обнаружили, что поведение девочек с врождённой гиперплазией коры надпочечников больше похоже на поведение мальчиков.

Что не влияет.

Отвечая на многие вопросы, сразу скажу, что на пол будущего ребёнка не влияет группа крови и резус-фактор отца и матери, форма живота, питание и токсикоз будущей мамы.

Чтобы я могла узнать, была ли статья для вас полезной, пожалуйста, нажмите на кнопки социальных сетей или оставьте ниже комментарий.

носитель мусорного ДНК или центр мужественности

Гены и хромосомы: не только половые

Если вы смотрели фильмы серии «Люди Х», то не стоит думать, что все это фантастика. Это самая что ни на есть реальность, хотя существенно приукрашенная. Все люди – мутанты, если сравнивать их с теми предками, что жили на заре человечества. Хромосомы и гены человека – это не статичная конструкция, которая не меняется тысячелетиями, это динамичная система, в которой постоянно что-то и где-то мутирует. У людей всего 23 пары хромосом (или 46 штучек), и 22 пары из них – аутосомы, они имеют вид дублей, одинаковы как у мальчиков, так и у девочек. В них закодирована вся информация о жизни и здоровье, программа роста, развития и даже болезней. Но самое интересное у людей – это половые хромосомы, они разные у мужчин и у женщин, и именно тут и кроется интрига относительно Y-хромосомы и ее роли в жизни мужчин.

В 22 парах неполовых хромосом есть дубли, то есть каждая хромосомка имеет сестру-близняшку, в которой продублирована полностью вся информация. У женщины ее 23-я пара половых хромосом – это тоже две ХХ-хромосомы, делающие женщину женщиной со всеми вытекающими внешними и внутренними признаками. И как вы сами видите, хромосомки у нее продублированы. А у мужчины, как говорится, все сложно, у него в половой паре есть ХY-хромосомы, которые делают его мужчиной в том смысле, что мы привыкли понимать. И дублей хромосом у него нет – каждая в единственном экземпляре. Если мужчина бы вдруг потерял одну из хромосом, свою расчудесную Y-хромосому, и получилось бы сочетание Х0 (ноль) – это была бы женщина, но низкорослая и с серьезными болезнями. В медицине это состояние известно, такие люди есть, их состояние именуют синдромом Шерешевского-Тернера. Как же на организм влияет эта Y-хромосома, чем она особенна и что о ней думают ученые?

Y-хромосома мужчин не уникальна!

Сразу хочется заметить, что наличие Y-хромосомы не уникально только для людей, подобное же определение пола типично для всех млекопитающих в целом. То есть у бурого мишки, у кита и у соседа по лестничной клетке мужские признаки и способность размножаться – это заслуга именно Y-хромосомы.

С точки зрения молекулярной биологии Y-хромосома – это небольшого размера цепочка генов, скрученная наподобие буквы Y английского алфавита. Она определяет в геноме половую принадлежность плода, включаясь в работу с начала развития зародыша. Ученые считают ее крайне «ненадежным товарищем», склонным к постоянному мутированию и деградации. Если оценить Y-хромосомы людей, живших еще 1000 лет назад, и современных мужчин, различия достаточно явны и существенны. Часть ученых-футурологов вообще предрекает примерно через 4 млн лет полное исчезновение этой хромосомы. За время существования Y-хромосомы, а это без малого 170 млн лет, она уже потеряла более 1 600 своих генов, рабочих и активных. В масштабах эволюции это глобальные и быстрые изменения.

Не в размерах ли дело?

Хромосомный пол, то есть определяемый сочетанием хромосом в паре, – это и плюс, и минус человечества одновременно. У женщины копий две: на случай поломки одного из генов есть второй, аналогичный на запасной хромосоме. А вот у мужчин есть крупная и упитанная Х-хромосома и маленькая, значительно исхудавшая за годы эволюции Y-хромосома. В Х-хромосоме имеется около 1 600 с лишним различных и функциональных генов, а у Y-хромосомы активных и рабочих генов всего около 30 штук. Большинство участков ДНК этой хромосомы неактивные, «пустые» и нефункциональные. Ученые считают, что это признак ее деградации.

Но роль этой малышки нельзя сбрасывать со счетов. Она включается в работу еще у эмбриона в первые недели после зачатия, давая старт формированию главных мужских органов. Кстати, это не пенис, а яички – это центр мужественности! В них начинают синтезироваться первые порции мужских половых гормонов, дающие развитие плода как мальчика. «Мужской» ген на Y-хромосоме был определен только в 1990 году. Если у плода возникнет серьезное повреждение (мутация) в гене мужественности на Y-хромосоме, он начнет развиваться девчонкой – и все, прощайте, яички и пенис!

Что же происходит?

Почему же в Y-хромосоме так стремительно копятся мутации и почему подобного не происходит у тех живых организмов, пол которых не зависит от пары половых хромосом (птицы, рептилии)? Исследователи говорят – ничего удивительного, это мутации, эволюция, создание все более совершенных форм жизни. И деградация половых хромосом, особенно Y-хромосомы, типична для всех млекопитающих. Это связано с тем, что у нее нет дубля, идентичной пары. Поэтому и мутации в ней неисправимы: нет исходников, на которых записана изначальная информация. Гены сохраняются в том виде, в котором их передал папа сыну. Если в ходе передачи произошел сбой, какая-то часть Y-хромосомы повредилась, сынок унаследует ее уже такой, измененной, и передаст своим сыновьям. Нет возможности обменяться информацией с Х-хромосомой, в ней записаны другие данные.

Проблема в том, что Y-хромосома постепенно копит груз опасных мутаций, особенно болезней, сцепленных с полом. Это значит, что мужчины становятся все болезненнее и слабее, приобретая мутацию за мутацией. Когда будет достигнута критическая масса изменений, мужской пол может совсем погибнуть. Но это будет не с нами и даже не с нашими внуками. Пройдет еще пара миллионов лет.

Что закодировано в Y-хромосоме?

У мужчин в Y-хромосоме не только заложена программа развития пола по мужскому типу у зародыша, но и заданы функции работы яичек уже у взрослых мужчин, она руководит синтезом спермы и созданием сперматозоидов заданной формы – с головками и хвостиками. Также она руководит работой эндокринных желез, выделяющих половые гормоны, управляет либидо и даже чисто мужским поведением. Так, науке известны синдромы удвоения Y-хромосомы, болезни Якобса. Это рослые и сильные мужчины, но при этом имеющие интеллектуальные и поведенческие отклонения, типичные для агрессоров и маньяков, преступников. Встречается с частотой 1 : 1 000 новорожденных мальчиков. У этих мужчин много андрогенов и гормонов гипофиза, но тестостерона не так и много, поэтому возникают подобные изменения внешности и поведения.

Если в ходе последующих мутаций Y-хромосома вдруг совсем деградирует, отключится, человечество, увы, закончит на этом свое существование. Без мужского пола размножение невозможно, если только ученые не научатся делать это за счет лишь женских половых клеток. Но все это пока не более чем теории…

Y хромосома: scinquisitor — LiveJournal

— Скажите, профессор! Вы рассказали, что через 5 миллионов лет Солнце достигнет таких размеров, что поглотит Землю. Это правда?
— Нет. Это произойдет только через 5 миллиардов лет.
— А! Ну, слава Богу!


Сегодня в прессе распространены известия о том, что скоро «мир останется без мужчин», что «мужская Y-хромосома — а вместе с нею и весь мужской род — находятся под угрозой вымирания», что «мужчины исчезнут как динозавры», «исчезнут с лица Земли», «исчезнут как биологический вид». Можно ли верить этим сенсациям? Что такое Y-хромосома и для чего она нужна? Что происходит с ней на самом деле? Правда ли существует угроза для мужского населения? Об этом — данная статья.

Наследственный материал человека организован в 22 пары неполовых хромосом (аутосом) и в две половые хромосомы. Половина хромосом достается нам от отца, половина — от матери. У женщин имеется две X-хромосомы, а у мужчин одна Х- и одна Y-хромосома. На самом деле, картина несколько более сложная. Примерно каждый пятисотый мужчина имеет две X- и одну Y-хромосому (XXY), а каждый тысячный имеет одну X и две Y (XYY). Каждая тысячная женщина имеет три Х (ХХХ).

Наличие более двух половых хромосом не смертельно, но может приводить к нарушениям развития. У XYY-мужчин нарушения выражены незначительно: наблюдаются небольшие ухудшения умственного развития, увеличенный рост, но при этом сохраняется фертильность (способность оставлять потомство). XXY-мужчины, как правило, бесплодны, у них меньше мужского полового гормона — тестостерона, менее развиты гениталии. ХХХ-женщины, как правило, фертильны, в некоторых случаях с отставанием в развитии. Изменение числа копий аутосом значительно более опасно: три копии 21-й хромосомы являются причиной развития синдрома Дауна, утроение любой из остальных хромосом несовместимо с жизнью.

Получается, что пол людей определяется наличием или отсутствием Y-хромосомы: если Y-хромосома есть, получается мужчина, если ее нет — женщина. Такая система определения пола не единственная возможная в мире животных. Например, у плодовой мушки дрозофилы пол определяется числом Х-хромосом и не зависит от наличия Y-хромосомы. У птиц, в отличие от людей, две одинаковые половые хромосомы наблюдаются у самцов, а у самок половые хромосомы разные. У утконоса (уникального яйцекладущего млекопитающего с клювом) имеется целых 10 половых хромосом, которые сцеплены в цепочки по пять: бывают ХХХХХХХХХХ-самки и XYXYXYXYXY-самцы. Более того, одна часть цепочки половых хромосом утконоса имеет сходство с половыми хромосомами птиц, а другая — с половыми хромосомами других млекопитающих.

В очень редких случаях среди людей, грызунов и некоторых других видов млекопитающих можно встретить самца без Y-хромосомы, а так же самку с Y-хромосомой. Было показано, что для определения пола необходима не вся Y-хромосома, а только малая ее часть, всего лишь один ген. Ген SRY, расположенный на Y-хромосоме, отвечает за развитие семенников. Если этот ген «перескочит» на другую хромосому, то может получиться XX-самец. Если в результате мутации ген SRY будет выведен из строя на Y-хромосоме, может быть получена XY-самка.

1991 году в научном журнале Nature была опубликована работа молекулярного биолога Питера Купмана, которому удалось встроить ген SRY c Y-хромосомы мышей в мышиные эмбрионы с двумя Х-хромосомами. Такие трансгенные мыши внешне оказались самцами. Так было подтверждено, что ключевое генетическое отличие между мужчиной и женщиной кроется в одном-единственном гене.

Но как один ген может так сильно повлиять на развитие человека? Оказалось, что ген SRY может активировать другие гены, отвечающие за развитие мужских половых признаков. У самки эти гены выключены, но появление гена SRY может привести к их включению. Иными словами, в геноме каждой женщины есть почти все необходимые инструкции для развития мужчины, но эти инструкции хранятся под замком. Ген SRY — ключ к этому замку.

Хотя работы Купмана показали, что одного гена достаточно, чтобы получить ХХ-мышей со всеми внешними признаками самцов, полученные самцы оказались бесплодны. Это означает, что для полноценного развития самца одного гена все-таки недостаточно. Тем не менее многие ученые склоняются к мнению, что количество генов, важных для развития полноценных мужчин, на Y-хромосоме невелико.

Последние данные свидетельствуют о том, что Y-хромосома стала половой хромосомой примерно 150 миллионов лет назад. Тогда Х- и Y-хромосомы были очень похожи, так же как современные неполовые хромосомы. С тех пор Y-хромосома неуклонно уменьшалась в размерах и утратила около 97% своих генов. Став половой хромосомой, она начала накапливать гены, полезные для мужчин, но вредные для женщин, и постепенно избавляться от всего остального.

Кроме того, Y-хромосома мутирует почти в 5 раз быстрее, чем остальные хромосомы. Считается, что это связано с тем, что появлению мужских половых клеток предшествует большое количество делений. Дело в том, что при каждом делении клеток необходимо копировать хромосомы, чтобы каждой новой клетке достался полноценный набор генетического материала. Но система копирования ДНК не идеальна: при каждом копировании возникают ошибки, своеобразные опечатки, мутации. Y-хромосома в каждом поколении проходит через большое количество копирований, потому что наследуется только через мужские половые клетки, а значит, накапливает больше ошибок, связанных с копированием. Аутосомы наследуются как от мужчин, так и от женщин, а значит, в половине поколений наследуются через женские половые клетки. Вследствие этого они в среднем проходят через меньшее число делений на одно поколение и накапливают меньше мутаций.

Если грубо посчитать скорость исчезновения генов с Y-хромосомы и количество оставшихся на ней генов, можно представить, что Y-хромосома утратит все свои гены примерно через десять миллионов лет. Сегодня ведется дискуссия о том, грозит ли Y-хромосоме полное исчезновение в будущем. Во-первых, опыты Купмана показывают, что Y-хромосома не так уж нужна: если пара-тройка важных для определения пола генов перескочат с Y-хромосомы на аутосому, мы получим новую систему определения пола. В такой системе от Y-хромосомы можно будет избавиться без особых последствий. Действительно, у некоторых видов грызунов в ходе эволюции Y-хромосома была полностью утрачена, что указывает на то, что описанный выше сценарий, действительно, возможен. Другая точка зрения гласит, что ничего с Y-хромосомой не случится. Сегодня показано, что существует ряд эволюционных механизмов, активно сохраняющих оставшиеся на Y-хромосоме гены. Совершено не обязательно, что Y-хромосома продолжит утрачивать оставшиеся на ней гены с той же скоростью, с которой она утрачивала их раньше. Несмотря на наличие разных точек зрения, ученые сходятся во мнении, что уменьшение Y не приведет к катастрофическим последствиям для человечества. Мужчины останутся.

www.novayagazeta.ru/data/2010/118/11.html

Женские и мужские хромосомы — общеизвестное и не только

Неоднократно в обсуждениях речь заходила о генетической разнице между мужчинами и женщинами. Посмотрим на общеизвестные факты еще раз?
Итак, то, что все мы знаем из биологии:

Сочетание половых хромосом между собой определяет пол организма. Клетки женского организма содержат две Х-хромосомы (ХХ). Мужские клетки содержат одну Х и одну Y-хромосомы (ХY).
Сочетание двух Y-хромосом (YY) не жизнеспособно.

Женская Х—хромосома
Количество генов — более 1400
Количество оснований — более 150 млн., из которых более 95% — определены
У женщин две Х-хромосомы, у мужчин одна Х-хромосома и одна Y-хромосома. Одна Х-хромосома наследуется от матери, а вторая (только у женщин) от бабушки по отцовской линии.

Хотя у женщин две X-хромосомы, в соматических клетках одна из них деактивирована и образует тельце Барра из Вики

Мужская Y-хромосома
Количество генов — более 200
Количество оснований — более 50 млн., из которых более 50% — определены
Y-хромосома содержит ген SRY, который определяет мужской пол и отвечает за регулирование деятельности яичек.
У женщин две Х-хромосомы, у мужчин одна Х-хромосома и одна Y-хромосома.

Правда, относительно количества генов в мужской и женской хромосоме числа в разных источниках несколько разнятся, но все сходятся на том, что мужская хромосома генами не обременена, и за наследственность, как таковую, ответственности не несет:
вариант: «Теперь мы знаем, что Y-хромосома содержит около двух дюжин генов, (сравните с 2000 генов в X-хромосоме). Большинство этих генов вовлечены в производство спермы или помогают клетке синтезировать белки»

Ну, а теперь про то, что на уроках биологии рассказывают не столь подробно и куда реже:

«…Триста миллионов лет тому назад в природе не существовало Y-хромосомы. У большинство животных была пара X-хромосом и пол определялся другими факторами, такими как температура. (У некоторых амфибий, таких как черепахи и крокодилы, и в настоящее время из одного и того же яйца может вылупиться как самец, так и самка, в зависимости от температуры). Затем в организме некого отдельного млекопитающего произошла мутация, и появившейся при этом новый ген стал определять «мужской путь развития» для тел — носителей этого гена…»

«… Ведущий научный журнал, Nature Genetics, предложил новую версию генеалогического древа человечества, основанную на до сих пор неизвестных вариациях — «гаплотипах», Y-хромосомы. Эти данные подтвердили, что предки современных людей мигрировали из Африки. Но судя по этим данным получалось, что генетическая Ева, прародительница всего человечества, на 84 тысячи лет старше генетического Адама, если измерять возраст по Y-хромосоме.
Женский эквивалент Y-хромосомы, т.е. генетическая информация, передаваемая от матери к дочери, известна как m-ДНК. Это ДНК митохондрий, которые являются источником энергии в клетке. В течение последних нескольких лет было общепринято, что «митахондриальная Ева» жила около 143 тысяч лет назад, что никак не согласовывалось с предполагаемым возрастом «Y -Адама», — 59 тысяч лет…»
отсюда

Встает резонный вопрос — как же происходило размножение все эти 84 тысячи лет? И как вообще женщины выжили все это время без мужчин в те суровые доисторические времена? В статье ответ дается размытый, мол, мужская хромосома все это время тоже совершенствовалась (хотя эзотерические источники недвусмысленно говорят о том, что мужской пол на этой планете появился на 80 тыс. лет позже, а до этого женщины преспокойно обходились без них):

«…На самом деле противоречия здесь нет. Эти данные говорят лишь о том, что различные хромосомы, найденные в человеческом геноме, появились в разное время. Около 143 тысяч лет назад в генофонде наших предков появилась новая разновидность m-ДНК. Она, как всякая удачная мутация распространялась во все большем количестве тел, пока не вытеснила все прочие разновидности из генофонда. Вот почему в настоящее время все женщины несут в себе эту новую, улучшенную версию m-ДНК. Это же произошло с Y-хромосомой у мужчин, только эволюции понадобилось еще 84 тысячи лет, чтобы создать супер-успешную версию, которая смогла вытеснить всех конкурентов». отсюда

Как говорится, выводы отсюда могут быть любыми.
Но когда кто-нибудь типа Малышевой начнет нести пургу о том, что женский мозг, мол, не столь совершенен как мужской, или что женщина генетически не приспособлена к чему-то (типа интеллектуального труда или социальных достижений), или тому подобные псевдонаучные сентенции, то, думаю, будет нелишним периодически напоминать себе все вышеизложенное. Потому что генетические исследования указывают на прямо противоположные факты.

Мужчины исчезнут вместе с их Y-хромосомой?

Совсем не ожидали мы такого вот конца

Поводом, если уж не для паники, но сильной тревоги послужила статья датских генетиков, опубликованная в журнале PloS Genetics. Ученые сообщили о том, что обнаружили у Y-хромосомы способность замедлять свои генетические потери. Например, создавая резервные копии генов, которые позволяют ремонтировать поврежденные участки ДНК.

По сути датские генетики продемонстрировали, что мужская Y-хромосома успешно защищается от деградации. Но СМИ — главным образом электронные — насторожились. Деградация? Так значит угроза Y-хромосоме, а вместе с ней и всему мужскому полу, все-таки существует?

Вопросы, поставленные подобным образом, возродили давнюю — утихшую было — дискуссию, начало которой положил профессор Брайан Сайкс (Bryan Sykes), издав в 2003 году книгу под названием «Проклятие Адама: будущее без мужчин» (Adam’s Curse: A Future Without Men). Ученый предсказал, что через 100-125 тысяч лет мужчины исчезнут, как вид. Потому что исчезнет мужская Y-хромосома.

У профессора нашлись сторонники. В том числе и профессор Дженнифер Грейвс (Jennifer Ann Marshall Graves) из Австралии (La Trobe Institute for Molecular Science), которая в 2004 году выступила с шокирующим докладом на Международной конференции по проблемам хромосом. И сообщила, что Y-хромосома человека за время своего существования лишилась 1393 генов из 1438, которые у нее были изначально. То есть, их осталось всего 45. Стало быть, дело действительно идет к тому, что от Y-хромосомы ничего не останется. Но не через сотни тысяч лет, как прогнозирует Сайкс, а примерно через 5 миллионов лет.

У людей Y-хромосома (в красном прямоугольнике) гнездится в 23-й паре хромосом.

Женская хромосома (слева) почему-то гораздо большей мужской.

Секс не кончается

Тех, кто не верит в бесславный конец мужских генов, воодушевляют исследования, проведенные в института Уайтхеда в Кембридже (Whitehead Institute, Cambridge, Massachusetts). Анализируя геном обезьян — наших далеких предков, ученые выяснили, что за последние 6 миллионов лет Y-хромосома не потеряла ни одного гена, а за 25 миллионов лет лишилась только одного. То есть, деградация мужской хромосомы остановилась. Стало быть, и нечего за мужчин переживать. Да и женщинам можно не паниковать: нынешний способ размножения не исчезнет еще долго.

Планы природы на счет людей загадочны.

ЛИКБЕЗ «КОМСОМОЛКИ»

Мужчины сохранятся в любом случае

У человека 23 пары хромосом. У женщин в 23-й паре — две X-хромосомы (ХХ), у мужчин с X-хромосомой соседствует Y-хромосома (XY). С Y-хромосомой ты мужчина, а то и отец своего сына благодаря гену SRY, носитель которого как раз мужская хромосома. Помимо того, что этот ген отвечает за выработку мужских гормонов и спермы, он еще и подает сигнал эмбриону, по какому пути тому развиваться — женскому (ХХ) или мужскому (XY).

В женской Х-хромосоме примерно 800 генов.

По мнению оптимистов, даже если Y-хромосома все-таки когда-нибудь исчезнет, ее генетический материал, скорее всего, перейдет в другую хромосому. Например, какую-нибудь Z. Она и станет мужской.

Принято считать, что еще 300 миллионов лет назад половая Y-хромосома вообще не существовала в природе. Не нужна была. Потому что сексом тогда никто не занимался. Размножались в основном посредством беспорочного зачатия, по-научному, партеногенеза, когда яйцеклетка развивается в зародыш без оплодотворения. Хотя самки и самцы появлялись. Просто похожие на рептилий прародители млекопитающих несли в себе весь набор генов, необходимый для развития в то или другое. Некий внутренний переключатель подавал зародышу сигнал, какое обличье ему принять.

По какой-то загадочной причине у животных появились полноценные половые хромосомы: сначала женская — Х. А потом и мужская — Y. Она отпочковалась от женской в результате некой — до сих пор не выясненной мутации. В результате Y-хромосома стала превращать в мужские особи все эмбрионы, в которые попадала. Так на Земле появились носители чисто мужского начала с сочетанием хромосом ХY, которые занялись сексом с самками — носителями ХХ. Такой способ размножения куда более прогрессивный по сравнению с партеногенеза или почкованием. Потому что позволяет потомству наследовать наиболее выгодные признаки и тем самым эволюционировать, приспосабливаться к меняющимся условиям окружающей среды.

С другой стороны..Вдруг природа и в самом деле намерена со временем уничтожить Y-хромосому и вернуться изначальному способу размножения? Ученые пока не разобрались в ее планах.

Отправить ответ

avatar
  Подписаться  
Уведомление о